Lemma 42.50.6. In Situation 42.50.1 we have
in $\mathop{\mathrm{CH}}\nolimits _*(Z)$ for any $\alpha \in \mathop{\mathrm{CH}}\nolimits _*(Z)$.
Lemma 42.50.6. In Situation 42.50.1 we have
in $\mathop{\mathrm{CH}}\nolimits _*(Z)$ for any $\alpha \in \mathop{\mathrm{CH}}\nolimits _*(Z)$.
Proof. We only prove the second equality and we omit the proof of the first. Since $c_ p(Z \to X, E)$ is a bivariant class and since the base change of $Z \to X$ by $Z \to X$ is $\text{id} : Z \to Z$ we have $c_ p(Z \to X, E) \cap i_*\alpha = c_ p(Z \to X, E) \cap \alpha $. By Lemma 42.50.4 the restriction of $c_ p(Z \to X, E)$ to $Z$ (!) is the localized Chern class for $\text{id} : Z \to Z$ and $E|_ Z$. Thus the result follows from (42.50.2.1) with $X = Z$. $\square$
Comments (0)