Remark 42.63.4. The upshot of Lemmas 42.63.2 and 42.63.3 is the following. Let (S, \delta ) be as above. Let X be a scheme locally of finite type over S. Let \alpha \in \mathop{\mathrm{CH}}\nolimits _*(X). Let Y \to Z be a morphism of schemes locally of finite type over S. Let c' \in A^ q(Y \to Z). Then
in \mathop{\mathrm{CH}}\nolimits _*(X \times _ S Y) for any \beta \in \mathop{\mathrm{CH}}\nolimits _*(Z). Namely, this follows by taking c = c_\alpha \in A^*(X \to S) the bivariant class corresponding to \alpha , see proof of Lemma 42.63.2.
Comments (0)