Lemma 13.28.6. Let $\mathcal{D}$, $\mathcal{D}'$, $\mathcal{D}''$ be triangulated categories. Let

be a functor such that for fixed $X$ in $\mathcal{D}$ the functor $X \otimes - : \mathcal{D}' \to \mathcal{D}''$ is an exact functor and for fixed $X'$ in $\mathcal{D}'$ the functor $- \otimes X' : \mathcal{D} \to \mathcal{D}''$ is an exact functor. Then $\otimes $ induces a bilinear map $K_0(\mathcal{D}) \times K_0(\mathcal{D}') \to K_0(\mathcal{D}'')$ which sends $([X], [X'])$ to $[X \otimes X']$.

## Comments (0)