Lemma 42.62.6. Let k be a field. Let X be a scheme smooth over k. Let i : Y \to X be a regular closed immersion. Let \alpha \in \mathop{\mathrm{CH}}\nolimits _*(X). If Y is equidimensional of dimension e, then \alpha \cdot [Y]_ e = i_*(i^!(\alpha )) in \mathop{\mathrm{CH}}\nolimits _*(X).
Proof. After decomposing X into connected components we may and do assume X is equidimensional of dimension d. Write \alpha = c \cap [X]_ n with x \in A^*(X), see Lemma 42.62.2. Then
i_*(i^!(\alpha )) = i_*(i^!(c \cap [X]_ n)) = i_*(c \cap i^![X]_ n) = i_*(c \cap [Y]_ e) = c \cap i_*[Y]_ e = \alpha \cdot [Y]_ e
The first equality by choice of c. Then second equality by Lemma 42.59.7. The third because i^![X]_ d = [Y]_ e in \mathop{\mathrm{CH}}\nolimits _*(Y) (Lemma 42.59.8). The fourth because bivariant classes commute with proper pushforward. The last equality by Lemma 42.62.2. \square
Comments (0)
There are also: