Lemma 42.62.6. Let $k$ be a field. Let $X$ be a scheme smooth over $k$. Let $i : Y \to X$ be a regular closed immersion. Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _*(X)$. If $Y$ is equidimensional of dimension $e$, then $\alpha \cdot [Y]_ e = i_*(i^!(\alpha ))$ in $\mathop{\mathrm{CH}}\nolimits _*(X)$.

Proof. After decomposing $X$ into connected components we may and do assume $X$ is equidimensional of dimension $d$. Write $\alpha = c \cap [X]_ n$ with $x \in A^*(X)$, see Lemma 42.62.2. Then

$i_*(i^!(\alpha )) = i_*(i^!(c \cap [X]_ n)) = i_*(c \cap i^![X]_ n) = i_*(c \cap [Y]_ e) = c \cap i_*[Y]_ e = \alpha \cdot [Y]_ e$

The first equality by choice of $c$. Then second equality by Lemma 42.59.7. The third because $i^![X]_ d = [Y]_ e$ in $\mathop{\mathrm{CH}}\nolimits _*(Y)$ (Lemma 42.59.8). The fourth because bivariant classes commute with proper pushforward. The last equality by Lemma 42.62.2. $\square$

There are also:

• 2 comment(s) on Section 42.62: Intersection products

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).