Lemma 49.8.1. In the situation above there is a canonical isomorphism

of complexes of $f^{-1}\mathcal{O}_ S$-modules.

Lemma 49.8.1. In the situation above there is a canonical isomorphism

\[ \text{Tot}(p^{-1}\Omega ^\bullet _{X/S} \otimes _{f^{-1}\mathcal{O}_ S} q^{-1}\Omega ^\bullet _{Y/S}) \longrightarrow \Omega ^\bullet _{X \times _ S Y/S} \]

of complexes of $f^{-1}\mathcal{O}_ S$-modules.

**Proof.**
By Derived Categories of Schemes, Remark 35.22.2 we have

\[ p^{-1}\Omega ^ i_{X/S} \otimes _{f^{-1}\mathcal{O}_ S} q^{-1}\Omega ^ j_{Y/S} = p^*\Omega ^ i_{X/S} \otimes _{\mathcal{O}_{X \times _ S Y}} q^*\Omega ^ j_{Y/S} \]

for all $i, j$. On the other hand, we know that $ \Omega _{X \times _ S Y/S} = p^*\Omega _{X/S} \oplus q^*\Omega _{Y/S} $ by Morphisms, Lemma 28.31.11. Taking exterior powers we obtain

\[ \Omega ^ n_{X \times _ S Y/S} = \bigoplus \nolimits _{i + j = n} p^*\Omega ^ i_{X/S} \otimes _{\mathcal{O}_{X \times _ S Y}} q^*\Omega ^ j_{Y/S} = \bigoplus \nolimits _{i + j = n} p^{-1}\Omega ^ i_{X/S} \otimes _{f^{-1}\mathcal{O}_ S} q^{-1}\Omega ^ j_{Y/S} \]

by elementary properties of exterior powers. This finishes the proof. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)