The Stacks project

Remark 50.9.2. Here is a reformulation of the calculations above in more abstract terms. Let $p : X \to S$ be a morphism of schemes. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. If we view $\text{d}\log $ as a map

\[ \mathcal{O}_ X^*[-1] \to \sigma _{\geq 1}\Omega ^\bullet _{X/S} \]

then using $\mathop{\mathrm{Pic}}\nolimits (X) = H^1(X, \mathcal{O}_ X^*)$ as above we find a cohomology class

\[ \gamma _1(\mathcal{L}) \in H^2(X, \sigma _{\geq 1}\Omega ^\bullet _{X/S}) \]

The image of $\gamma _1(\mathcal{L})$ under the map $\sigma _{\geq 1}\Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}$ recovers $c_1^{dR}(\mathcal{L})$. In particular we see that $c_1^{dR}(\mathcal{L}) \in F^1H^2_{dR}(X/S)$, see Section 50.7. The image of $\gamma _1(\mathcal{L})$ under the map $\sigma _{\geq 1}\Omega ^\bullet _{X/S} \to \Omega ^1_{X/S}[-1]$ recovers $c_1^{Hodge}(\mathcal{L})$. Taking the cup product (see Section 50.7) we obtain

\[ \xi = \gamma _1(\mathcal{L}_1) \cup \ldots \cup \gamma _1(\mathcal{L}_ a) \in H^{2a}(X, \sigma _{\geq a}\Omega ^\bullet _{X/S}) \]

The commutative diagrams in Section 50.7 show that $\xi $ is mapped to $c_1^{dR}(\mathcal{L}_1) \cup \ldots \cup c_1^{dR}(\mathcal{L}_ a)$ in $H^{2a}_{dR}(X/S)$ by the map $\sigma _{\geq a}\Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}$. Also, it follows $c_1^{dR}(\mathcal{L}_1) \cup \ldots \cup c_1^{dR}(\mathcal{L}_ a)$ is contained in $F^ a H^{2a}_{dR}(X/S)$. Similarly, the map $\sigma _{\geq a}\Omega ^\bullet _{X/S} \to \Omega ^ a_{X/S}[-a]$ sends $\xi $ to $c_1^{Hodge}(\mathcal{L}_1) \cup \ldots \cup c_1^{Hodge}(\mathcal{L}_ a)$ in $H^ a(X, \Omega ^ a_{X/S})$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FME. Beware of the difference between the letter 'O' and the digit '0'.