Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 18.41.4. Consider a commutative diagram

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{(g', (g')^\sharp )} \ar[d]_{(f', (f')^\sharp )} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^{(f, f^\sharp )} \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^{(g, g^\sharp )} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) } \]

of ringed topoi and suppose we have functors

\[ \xymatrix{ \mathcal{C}' \ar[r]_{v'} & \mathcal{C} \\ \mathcal{D}' \ar[r]^ v \ar[u]^{u'} & \mathcal{D} \ar[u]_ u } \]

such that (with notation as in Sites, Sections 7.14 and 7.21) we have

  1. $u$ and $u'$ are continuous and give rise to the morphisms $f$ and $f'$,

  2. $v$ and $v'$ are cocontinuous giving rise to the morphisms $g$ and $g'$,

  3. $u \circ v = v' \circ u'$,

  4. $v$ and $v'$ are continuous as well as cocontinuous, and

  5. $g^{-1}\mathcal{O}_{\mathcal{D}} = \mathcal{O}_{\mathcal{D}'}$ and $(g')^{-1}\mathcal{O}_{\mathcal{C}} = \mathcal{O}_{\mathcal{C}'}$.

Then $f'_* \circ (g')^* = g^* \circ f_*$ and $g'_! \circ (f')^{-1} = f^{-1} \circ g_!$ on modules.

Proof. We have $(g')^*\mathcal{F} = (g')^{-1}\mathcal{F}$ and $g^*\mathcal{G} = g^{-1}\mathcal{G}$ because of condition (5). Thus the first equality follows immediately from the corresponding equality in Sites, Lemma 7.28.7. Since the left adjoint functors $g_!$ and $g'_!$ to $g^*$ and $(g')^*$ exist by Lemma 18.41.1 we see that the second equality follows by uniqueness of adjoint functors. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.