18.41 Lower shriek for modules
In this section we extend the construction of $g_!$ discussed in Section 18.16 to the case of sheaves of modules.
Lemma 18.41.1. Let $u : \mathcal{C} \to \mathcal{D}$ be a continuous and cocontinuous functor between sites. Denote $g : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D})$ the associated morphism of topoi. Let $\mathcal{O}_\mathcal {D}$ be a sheaf of rings on $\mathcal{D}$. Set $\mathcal{O}_\mathcal {C} = g^{-1}\mathcal{O}_\mathcal {D}$. Hence $g$ becomes a morphism of ringed topoi with $g^* = g^{-1}$. In this case there exists a functor
\[ g_! : \textit{Mod}(\mathcal{O}_\mathcal {C}) \longrightarrow \textit{Mod}(\mathcal{O}_\mathcal {D}) \]
which is left adjoint to $g^*$.
Proof.
Let $U$ be an object of $\mathcal{C}$. For any $\mathcal{O}_\mathcal {D}$-module $\mathcal{G}$ we have
\begin{align*} \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_\mathcal {C}}(j_{U!}\mathcal{O}_ U, g^{-1}\mathcal{G}) & = g^{-1}\mathcal{G}(U) \\ & = \mathcal{G}(u(U)) \\ & = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_\mathcal {D}}(j_{u(U)!}\mathcal{O}_{u(U)}, \mathcal{G}) \end{align*}
because $g^{-1}$ is described by restriction, see Sites, Lemma 7.21.5. Of course a similar formula holds a direct sum of modules of the form $j_{U!}\mathcal{O}_ U$. By Homology, Lemma 12.29.6 and Lemma 18.28.8 we see that $g_!$ exists.
$\square$
The following two results are of a slightly different nature.
Lemma 18.41.3. Assume given a commutative diagram
\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{(g', (g')^\sharp )} \ar[d]_{(f', (f')^\sharp )} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^{(f, f^\sharp )} \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^{(g, g^\sharp )} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) } \]
of ringed topoi. Assume
$f$, $f'$, $g$, and $g'$ correspond to cocontinuous functors $u$, $u'$, $v$, and $v'$ as in Sites, Lemma 7.21.1,
$v \circ u' = u \circ v'$,
$v$ and $v'$ are continuous as well as cocontinuous,
for any object $V'$ of $\mathcal{D}'$ the functor ${}^{u'}_{V'}\mathcal{I} \to {}^{\ \ \ u}_{v(V')}\mathcal{I}$ given by $v$ is cofinal, and
$g^{-1}\mathcal{O}_{\mathcal{D}} = \mathcal{O}_{\mathcal{D}'}$ and $(g')^{-1}\mathcal{O}_{\mathcal{C}} = \mathcal{O}_{\mathcal{C}'}$.
Then we have $f'_* \circ (g')^* = g^* \circ f_*$ and $g'_! \circ (f')^{-1} = f^{-1} \circ g_!$ on modules.
Proof.
We have $(g')^*\mathcal{F} = (g')^{-1}\mathcal{F}$ and $g^*\mathcal{G} = g^{-1}\mathcal{G}$ because of condition (5). Thus the first equality follows immediately from the corresponding equality in Sites, Lemma 7.28.6. Since the left adjoint functors $g_!$ and $g'_!$ to $g^*$ and $(g')^*$ exist by Lemma 18.41.1 we see that the second equality follows by uniqueness of adjoint functors.
$\square$
Lemma 18.41.4. Consider a commutative diagram
\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{(g', (g')^\sharp )} \ar[d]_{(f', (f')^\sharp )} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^{(f, f^\sharp )} \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^{(g, g^\sharp )} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) } \]
of ringed topoi and suppose we have functors
\[ \xymatrix{ \mathcal{C}' \ar[r]_{v'} & \mathcal{C} \\ \mathcal{D}' \ar[r]^ v \ar[u]^{u'} & \mathcal{D} \ar[u]_ u } \]
such that (with notation as in Sites, Sections 7.14 and 7.21) we have
$u$ and $u'$ are continuous and give rise to the morphisms $f$ and $f'$,
$v$ and $v'$ are cocontinuous giving rise to the morphisms $g$ and $g'$,
$u \circ v = v' \circ u'$,
$v$ and $v'$ are continuous as well as cocontinuous, and
$g^{-1}\mathcal{O}_{\mathcal{D}} = \mathcal{O}_{\mathcal{D}'}$ and $(g')^{-1}\mathcal{O}_{\mathcal{C}} = \mathcal{O}_{\mathcal{C}'}$.
Then $f'_* \circ (g')^* = g^* \circ f_*$ and $g'_! \circ (f')^{-1} = f^{-1} \circ g_!$ on modules.
Proof.
We have $(g')^*\mathcal{F} = (g')^{-1}\mathcal{F}$ and $g^*\mathcal{G} = g^{-1}\mathcal{G}$ because of condition (5). Thus the first equality follows immediately from the corresponding equality in Sites, Lemma 7.28.7. Since the left adjoint functors $g_!$ and $g'_!$ to $g^*$ and $(g')^*$ exist by Lemma 18.41.1 we see that the second equality follows by uniqueness of adjoint functors.
$\square$
Comments (0)