The Stacks project

18.42 Constant sheaves

Let $E$ be a set and let $\mathcal{C}$ be a site. We will denote $\underline{E}$ the constant sheaf with value $E$ on $\mathcal{C}$. If $E$ is an abelian group, ring, module, etc, then $\underline{E}$ is a sheaf of abelian groups, rings, modules, etc.

Lemma 18.42.1. Let $\mathcal{C}$ be a site. If $0 \to A \to B \to C \to 0$ is a short exact sequence of abelian groups, then $0 \to \underline{A} \to \underline{B} \to \underline{C} \to 0$ is an exact sequence of abelian sheaves and in fact it is even exact as a sequence of abelian presheaves.

Proof. Since sheafification is exact it is clear that $0 \to \underline{A} \to \underline{B} \to \underline{C} \to 0$ is an exact sequence of abelian sheaves. Thus $0 \to \underline{A} \to \underline{B} \to \underline{C}$ is an exact sequence of abelian presheaves. To see that $\underline{B} \to \underline{C}$ is surjective, pick a set theoretical section $s : C \to B$. This induces a section $\underline{s} : \underline{C} \to \underline{B}$ of sheaves of sets left inverse to the surjection $\underline{B} \to \underline{C}$. $\square$

Lemma 18.42.2. Let $\mathcal{C}$ be a site. Let $\Lambda $ be a ring and let $M$ and $Q$ be $\Lambda $-modules. If $Q$ is a finitely presented $\Lambda $-module, then we have $\underline{M \otimes _\Lambda Q}(U) = \underline{M}(U) \otimes _\Lambda Q$ for all $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$.

Proof. Choose a presentation $\Lambda ^{\oplus m} \to \Lambda ^{\oplus n} \to Q \to 0$. This gives an exact sequence $M^{\oplus m} \to M^{\oplus n} \to M \otimes Q \to 0$. By Lemma 18.42.1 we obtain an exact sequence

\[ \underline{M}(U)^{\oplus m} \to \underline{M}(U)^{\oplus n} \to \underline{M \otimes Q}(U) \to 0 \]

which proves the lemma. (Note that taking sections over $U$ always commutes with finite direct sums, but not arbitrary direct sums.) $\square$

Lemma 18.42.3. Let $\mathcal{C}$ be a site. Let $\Lambda $ be a coherent ring. Let $M$ be a flat $\Lambda $-module. For $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ the module $\underline{M}(U)$ is a flat $\Lambda $-module.

Proof. Let $I \subset \Lambda $ be a finitely generated ideal. By Algebra, Lemma 10.39.5 it suffices to show that $\underline{M}(U) \otimes _\Lambda I \to \underline{M}(U)$ is injective. As $\Lambda $ is coherent $I$ is finitely presented as a $\Lambda $-module. By Lemma 18.42.2 we see that $\underline{M}(U) \otimes I = \underline{M \otimes I}$. Since $M$ is flat the map $M \otimes I \to M$ is injective, whence $\underline{M \otimes I} \to \underline{M}$ is injective. $\square$

Lemma 18.42.4. Let $\mathcal{C}$ be a site. Let $\Lambda $ be a Noetherian ring. Let $I \subset \Lambda $ be an ideal. The sheaf $\underline{\Lambda }^\wedge = \mathop{\mathrm{lim}}\nolimits \underline{\Lambda /I^ n}$ is a flat $\underline{\Lambda }$-algebra. Moreover we have canonical identifications

\[ \underline{\Lambda }/I\underline{\Lambda } = \underline{\Lambda }/\underline{I} = \underline{\Lambda }^\wedge /I\underline{\Lambda }^\wedge = \underline{\Lambda }^\wedge /\underline{I} \cdot \underline{\Lambda }^\wedge = \underline{\Lambda }^\wedge /\underline{I}^\wedge = \underline{\Lambda /I} \]

where $\underline{I}^\wedge = \mathop{\mathrm{lim}}\nolimits \underline{I/I^ n}$.

Proof. To prove $\underline{\Lambda }^\wedge $ is flat, it suffices to show that $\underline{\Lambda }^\wedge (U)$ is flat as a $\Lambda $-module for each $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, see Lemmas 18.28.2 and 18.28.3. By Lemma 18.42.3 we see that

\[ \underline{\Lambda }^\wedge (U) = \mathop{\mathrm{lim}}\nolimits \underline{\Lambda /I^ n}(U) \]

is a limit of a system of flat $\Lambda /I^ n$-modules. By Lemma 18.42.1 we see that the transition maps are surjective. We conclude by More on Algebra, Lemma 15.27.4.

To see the equalities, note that $\underline{\Lambda }(U)/I\underline{\Lambda }(U) = \underline{\Lambda /I}(U)$ by Lemma 18.42.2. It follows that $\underline{\Lambda }/I\underline{\Lambda } = \underline{\Lambda }/\underline{I} = \underline{\Lambda /I}$. The system of short exact sequences

\[ 0 \to \underline{I/I^ n}(U) \to \underline{\Lambda /I^ n}(U) \to \underline{\Lambda /I}(U) \to 0 \]

has surjective transition maps, hence gives a short exact sequence

\[ 0 \to \mathop{\mathrm{lim}}\nolimits \underline{I/I^ n}(U) \to \mathop{\mathrm{lim}}\nolimits \underline{\Lambda /I^ n}(U) \to \mathop{\mathrm{lim}}\nolimits \underline{\Lambda /I}(U) \to 0 \]

see Homology, Lemma 12.31.3. Thus we see that $\underline{\Lambda }^\wedge /\underline{I}^\wedge = \underline{\Lambda /I}$. Since

\[ I \underline{\Lambda }^\wedge \subset \underline{I} \cdot \underline{\Lambda }^\wedge \subset \underline{I}^\wedge \]

it suffices to show that $I \underline{\Lambda }^\wedge (U) = \underline{I}^\wedge (U)$ for all $U$. Choose generators $I = (f_1, \ldots , f_ r)$. For every $n$ we obtain a short exact sequence

\[ 0 \to K_ n/(I^ n)^{\oplus r} \to (\Lambda /I^ n)^{\oplus r} \xrightarrow {(f_1, \ldots , f_ r)} I/I^{n + 1} \to 0 \]

where $K_ n = \{ (x_1, \ldots , x_ r) \in \Lambda ^{\oplus r} \mid \sum x_ i f_ i \in I^{n + 1}\} $. We obtain short exact sequences

\[ 0 \to \underline{K_ n/(I^ n)^{\oplus r}}(U) \to \underline{(\Lambda /I^ n)^{\oplus r}}(U) \to \underline{I/I^{n + 1}}(U) \to 0 \]

A calculation shows $K_ n = K + (I^ n)^{\oplus r}$, hence the transition maps $K_{n + 1}/(I^{n + 1})^{\oplus r} \to K_ n/(I^ n)^{\oplus r}$ are surjective. Hence the system of modules on the left hand side has surjective transition maps and a fortiori has ML. Thus we see that $(f_1, \ldots , f_ r) : (\underline{\Lambda }^\wedge )^{\oplus r}(U) \to \underline{I}^\wedge (U)$ is surjective by Homology, Lemma 12.31.3 which is what we wanted to show. $\square$

Lemma 18.42.5. Let $\mathcal{C}$ be a site. Let $\Lambda $ be a ring and let $M$ be a $\Lambda $-module. Assume $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ is not the empty topos. Then

  1. $\underline{M}$ is a finite type sheaf of $\underline{\Lambda }$-modules if and only if $M$ is a finite $\Lambda $-module, and

  2. $\underline{M}$ is a finitely presented sheaf of $\underline{\Lambda }$-modules if and only if $M$ is a finitely presented $\Lambda $-module.

Proof. Proof of (1). If $M$ is generated by $x_1, \ldots , x_ r$ then $x_1, \ldots , x_ r$ define global sections of $\underline{M}$ which generate it, hence $\underline{M}$ is of finite type. Conversely, assume $\underline{M}$ is of finite type. Let $U \in \mathcal{C}$ be an object which is not sheaf theoretically empty (Sites, Definition 7.42.1). Such an object exists as we assumed $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ is not the empty topos. Then there exists a covering $\{ U_ i \to U\} $ and finitely many sections $s_{ij} \in \underline{M}(U_ i)$ generating $\underline{M}|_{U_ i}$. After refining the covering we may assume that $s_{ij}$ come from elements $x_{ij}$ of $M$. Then $x_{ij}$ define global sections of $\underline{M}$ whose restriction to $U$ generate $\underline{M}$.

Assume there exist elements $x_1, \ldots , x_ r$ of $M$ which define global sections of $\underline{M}$ generating $\underline{M}$ as a sheaf of $\underline{\Lambda }$-modules. We will show that $x_1, \ldots , x_ r$ generate $M$ as a $\Lambda $-module. Let $x \in M$. We can find a covering $\{ U_ i \to U\} _{i \in I}$ and $f_{i, j} \in \underline{\Lambda }(U_ i)$ such that $x|_{U_ i} = \sum f_{i, j} x_ j|_{U_ i}$. After refining the covering we may assume $f_{i, j} \in \Lambda $. Since $U$ is not sheaf theoretically empty, there is at least one $i \in I$ such that $U_ i$ is not sheaf theoretically empty. Then the map $M \to \underline{M}(U_ i)$ is injective (details omitted). We conclude that $x = \sum f_{i, j}x_ j$ in $M$ as desired.

Proof of (2). Assume $\underline{M}$ is a $\underline{\Lambda }$-module of finite presentation. By (1) we see that $M$ is of finite type. Choose generators $x_1, \ldots , x_ r$ of $M$ as a $\Lambda $-module. This determines a short exact sequence $0 \to K \to \Lambda ^{\oplus r} \to M \to 0$ which turns into a short exact sequence

\[ 0 \to \underline{K} \to \underline{\Lambda }^{\oplus r} \to \underline{M} \to 0 \]

by Lemma 18.42.1. By Lemma 18.24.1 we see that $\underline{K}$ is of finite type. Hence $K$ is a finite $\Lambda $-module by (1). Thus $M$ is a $\Lambda $-module of finite presentation. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 093I. Beware of the difference between the letter 'O' and the digit '0'.