Lemma 18.42.2. Let \mathcal{C} be a site. Let \Lambda be a ring and let M and Q be \Lambda -modules. If Q is a finitely presented \Lambda -module, then we have \underline{M \otimes _\Lambda Q}(U) = \underline{M}(U) \otimes _\Lambda Q for all U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}).
Proof. Choose a presentation \Lambda ^{\oplus m} \to \Lambda ^{\oplus n} \to Q \to 0. This gives an exact sequence M^{\oplus m} \to M^{\oplus n} \to M \otimes Q \to 0. By Lemma 18.42.1 we obtain an exact sequence
\underline{M}(U)^{\oplus m} \to \underline{M}(U)^{\oplus n} \to \underline{M \otimes Q}(U) \to 0
which proves the lemma. (Note that taking sections over U always commutes with finite direct sums, but not arbitrary direct sums.) \square
Comments (0)