Lemma 15.126.2. Let $R$ be a ring. Let $F^\bullet $ be a bounded above complex of free $R$-modules. Given pairs $(n_ i, f_ i)$, $i = 1, \ldots , N$ with $n_ i \in \mathbf{Z}$ and $f_ i \in F^{n_ i}$ there exists a subcomplex $G^\bullet \subset F^\bullet $ containing all $f_ i$ which is bounded and consists of finite free $R$-modules.
Proof. By descending induction on $a = \min (n_ i; i = 1, \ldots , N)$. If $F^ n = 0$ for $n \geq a$, then the result is true with $G^\bullet $ equal to the zero complex. In general, after renumbering we may assume there exists an $1 \leq r \leq N$ such that $n_1 = \ldots = n_ r = a$ and $n_ i > a$ for $i > r$. Choose a basis $b_ j, j \in J$ for $F^ a$. We can choose a finite subset $J' \subset J$ such that $f_ i \in \bigoplus _{j \in J'} Rb_ j$ for $i = 1, \ldots , r$. Choose a basis $c_ k, k \in K$ for $F^{a + 1}$. We can choose a finite subset $K' \subset K$ such that $\text{d}_ F^ a(b_ j) \in \bigoplus _{k \in K'} Rc_ k$ for $j \in J'$. Then we can apply the induction hypothesis to find a subcomplex $H^\bullet \subset F^\bullet $ containing $c_ k \in F^{a + 1}$ for $k \in K'$ and $f_ i \in F^{n_ i}$ for $i > r$. Take $G^\bullet $ equal to $H^\bullet $ in degrees $> a$ and equal to $\bigoplus _{j \in J'} Rb_ j$ in degree $a$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)