Definition 22.11.3. Let R be a ring. Let A be a \mathbf{Z}-graded R-algebra.
Given a right graded A-module M we define the kth shifted A-module M[k] as the same as a right A-module but with grading (M[k])^ n = M^{n + k}.
Given a left graded A-module M we define the kth shifted A-module M[k] as the module with grading (M[k])^ n = M^{n + k} and multiplication A^ n \times (M[k])^ m \to (M[k])^{n + m} equal to (-1)^{nk} times the given multiplication A^ n \times M^{m + k} \to M^{n + m + k}.
Comments (0)