Lemma 24.9.1. In the situation above we have

## 24.9 Pull and push for sheaves of graded modules

We advise the reader to skip this section.

Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a graded $\mathcal{O}_\mathcal {C}$-algebra. Let $\mathcal{B}$ be a graded $\mathcal{O}_\mathcal {D}$-algebra. Suppose we are given a map

of graded $f^{-1}\mathcal{O}_\mathcal {D}$-algebras. By the adjunction of restriction and extension of scalars, this is the same thing as a map $\varphi : f^*\mathcal{B} \to \mathcal{A}$ of graded $\mathcal{O}_\mathcal {C}$-algebras or equivalently $\varphi $ can be viewed as a map

of graded $\mathcal{O}_\mathcal {D}$-algebras. See Remark 24.3.2.

Let us define a functor

Given a graded $\mathcal{A}$-module $\mathcal{M}$ we define $f_*\mathcal{M}$ to be the graded $\mathcal{B}$-module whose degree $n$ term is $f_*\mathcal{M}^ n$. As multiplication we use

where $\mu _{n, m} : \mathcal{M}^ n \times \mathcal{A}^ m \to \mathcal{M}^{n + m}$ is the multiplication map for $\mathcal{M}$ over $\mathcal{A}$. This uses that $f_*$ commutes with products. The construction is clearly functorial in $\mathcal{M}$ and we obtain our functor.

Let us define a functor

We will define this functor as a composite of functors

First, given a graded $\mathcal{B}$-module $\mathcal{N}$ we define $f^{-1}\mathcal{N}$ to be the graded $f^{-1}\mathcal{B}$-module whose degree $n$ term is $f^{-1}\mathcal{N}^ n$. As multiplication we use

where $\nu _{n, m} : \mathcal{N}^ n \times \mathcal{B}^ m \to \mathcal{N}^{n + m}$ is the multiplication map for $\mathcal{N}$ over $\mathcal{B}$. This uses that $f^{-1}$ commutes with products. The construction is clearly functorial in $\mathcal{N}$ and we obtain our functor $f^{-1}$. Having said this, we can use the tensor product discussion in Section 24.8 to define the functor

Finally, we set

as already foretold above.

The functors $f_*$ and $f^*$ are readily enhanced to give functors of graded categories

which do the same thing on underlying objects and are defined by functoriality of the constructions on homogenous morphisms of degree $n$.

**Proof.**
Omitted. Hints: First prove that $f^{-1}$ and $f_*$ are adjoint as functors between $\textit{Mod}(\mathcal{B})$ and $\textit{Mod}(f^{-1}\mathcal{B})$ using the adjunction between $f^{-1}$ and $f_*$ on sheaves of abelian groups. Next, use the adjunction between base change and restriction given in Section 24.8.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)