## 24.9 Pull and push for sheaves of graded modules

Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{A}$ be a graded $\mathcal{O}_\mathcal {C}$-algebra. Let $\mathcal{B}$ be a graded $\mathcal{O}_\mathcal {D}$-algebra. Suppose we are given a map

$\varphi : f^{-1}\mathcal{B} \to \mathcal{A}$

of graded $f^{-1}\mathcal{O}_\mathcal {D}$-algebras. By the adjunction of restriction and extension of scalars, this is the same thing as a map $\varphi : f^*\mathcal{B} \to \mathcal{A}$ of graded $\mathcal{O}_\mathcal {C}$-algebras or equivalently $\varphi$ can be viewed as a map

$\varphi : \mathcal{B} \to f_*\mathcal{A}$

of graded $\mathcal{O}_\mathcal {D}$-algebras. See Remark 24.3.2.

Let us define a functor

$f_* : \textit{Mod}(\mathcal{A}) \longrightarrow \textit{Mod}(\mathcal{B})$

Given a graded $\mathcal{A}$-module $\mathcal{M}$ we define $f_*\mathcal{M}$ to be the graded $\mathcal{B}$-module whose degree $n$ term is $f_*\mathcal{M}^ n$. As multiplication we use

$f_*\mathcal{M}^ n \times \mathcal{B}^ m \xrightarrow {(\text{id}, \varphi ^ m)} f_*\mathcal{M}^ n \times f_*\mathcal{A}^ m \xrightarrow {f_*\mu _{n, m}} f_*\mathcal{M}^{n + m}$

where $\mu _{n, m} : \mathcal{M}^ n \times \mathcal{A}^ m \to \mathcal{M}^{n + m}$ is the multiplication map for $\mathcal{M}$ over $\mathcal{A}$. This uses that $f_*$ commutes with products. The construction is clearly functorial in $\mathcal{M}$ and we obtain our functor.

Let us define a functor

$f^* : \textit{Mod}(\mathcal{B}) \longrightarrow \textit{Mod}(\mathcal{A})$

We will define this functor as a composite of functors

$\textit{Mod}(\mathcal{B}) \xrightarrow {f^{-1}} \textit{Mod}(f^{-1}\mathcal{B}) \xrightarrow { - \otimes _{f^{-1}\mathcal{B}} \mathcal{A}} \textit{Mod}(\mathcal{A})$

First, given a graded $\mathcal{B}$-module $\mathcal{N}$ we define $f^{-1}\mathcal{N}$ to be the graded $f^{-1}\mathcal{B}$-module whose degree $n$ term is $f^{-1}\mathcal{N}^ n$. As multiplication we use

$f^{-1}\nu _{n, m} : f^{-1}\mathcal{N}^ n \times f^{-1}\mathcal{B}^ m \longrightarrow f^{-1}\mathcal{N}^{n + m}$

where $\nu _{n, m} : \mathcal{N}^ n \times \mathcal{B}^ m \to \mathcal{N}^{n + m}$ is the multiplication map for $\mathcal{N}$ over $\mathcal{B}$. This uses that $f^{-1}$ commutes with products. The construction is clearly functorial in $\mathcal{N}$ and we obtain our functor $f^{-1}$. Having said this, we can use the tensor product discussion in Section 24.8 to define the functor

$- \otimes _{f^{-1}\mathcal{B}} \mathcal{A} : \textit{Mod}(f^{-1}\mathcal{B}) \longrightarrow \textit{Mod}(\mathcal{A})$

Finally, we set

$f^*\mathcal{N} = f^{-1}\mathcal{N} \otimes _{f^{-1}\mathcal{B}, \varphi } \mathcal{A}$

The functors $f_*$ and $f^*$ are readily enhanced to give functors of graded categories

$f_* : \textit{Mod}^{gr}(\mathcal{A}) \longrightarrow \textit{Mod}^{gr}(\mathcal{B}) \quad \text{and}\quad f^* : \textit{Mod}^{gr}(\mathcal{B}) \longrightarrow \textit{Mod}^{gr}(\mathcal{A})$

which do the same thing on underlying objects and are defined by functoriality of the constructions on homogenous morphisms of degree $n$.

Lemma 24.9.1. In the situation above we have

$\mathop{\mathrm{Hom}}\nolimits _{\textit{Mod}^{gr}(\mathcal{B})}( \mathcal{N}, f_*\mathcal{M}) = \mathop{\mathrm{Hom}}\nolimits _{\textit{Mod}^{gr}(\mathcal{A})}( f^*\mathcal{N}, \mathcal{M})$

Proof. Omitted. Hints: First prove that $f^{-1}$ and $f_*$ are adjoint as functors between $\textit{Mod}(\mathcal{B})$ and $\textit{Mod}(f^{-1}\mathcal{B})$ using the adjunction between $f^{-1}$ and $f_*$ on sheaves of abelian groups. Next, use the adjunction between base change and restriction given in Section 24.8. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FR7. Beware of the difference between the letter 'O' and the digit '0'.