The Stacks project

Remark 24.12.2. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi.

  1. Let $(\mathcal{A}, \text{d})$ be a differential graded $\mathcal{O}_\mathcal {C}$-algebra. The pushforward will be the differential graded $\mathcal{O}_\mathcal {D}$-algebra $(f_*\mathcal{A}, \text{d})$ where $f_*\mathcal{A}$ is as in Remark 24.3.2 and $\text{d} = f_*\text{d}$ as maps $f_*\mathcal{A}^ n \to f_*\mathcal{A}^{n + 1}$. We omit the verification that the Leibniz rule is satisfied.

  2. Let $\mathcal{B}$ be a differential graded $\mathcal{O}_\mathcal {D}$-algebra. The pullback will be the differential graded $\mathcal{O}_\mathcal {C}$-algebra $(f^*\mathcal{B}, \text{d})$ where $f^*\mathcal{B}$ is as in Remark 24.3.2 and $\text{d} = f^*\text{d}$ as maps $f^*\mathcal{B}^ n \to f^*\mathcal{B}^{n + 1}$. We omit the verification that the Leibniz rule is satisfied.

  3. The set of homomorphisms $f^*\mathcal{B} \to \mathcal{A}$ of differential graded $\mathcal{O}_\mathcal {C}$-algebras is in $1$-to-$1$ correspondence with the set of homomorphisms $\mathcal{B} \to f_*\mathcal{A}$ of differential graded $\mathcal{O}_\mathcal {D}$-algebras.

Part (3) follows immediately from the usual adjunction between $f^*$ and $f_*$ on sheaves of modules.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FRG. Beware of the difference between the letter 'O' and the digit '0'.