Lemma 24.22.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(\mathcal{A}, \text{d})$ be a differential graded $\mathcal{O}$-algebra. The category $\textit{Mod}(\mathcal{A}, \text{d})$ is a Grothendieck abelian category.
Proof. By Lemma 24.13.2 and the definition of a Grothendieck abelian category (Injectives, Definition 19.10.1) it suffices to show that $\textit{Mod}(\mathcal{A}, \text{d})$ has a generator. For every object $U$ of $\mathcal{C}$ we denote $C_ U$ the cone on the identity map $\mathcal{A}_ U \to \mathcal{A}_ U$ as in Remark 24.22.5. We claim that
is a generator where the sum is over all objects $U$ of $\mathcal{C}$ and $k \in \mathbf{Z}$. Indeed, given a differential graded $\mathcal{A}$-module $\mathcal{M}$ if there are no nonzero maps from $\mathcal{G}$ to $\mathcal{M}$, then we see that for all $k$ and $U$ we have
is equal to zero. Hence $\mathcal{M}$ is zero. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)