Definition 24.29.2. Derived internal hom and derived pushforward.
Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{A}, \mathcal{B} be differential graded \mathcal{O}-algebras. Let \mathcal{N} be a differential graded (\mathcal{A}, \mathcal{B})-bimodule. The right derived extension
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}(\mathcal{N}, -) : D(\mathcal{B}, \text{d}) \longrightarrow D(\mathcal{A}, \text{d})of the internal hom functor \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {B}^{dg}(\mathcal{N}, -) is called derived internal hom.
Let (f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) be a morphism of ringed topoi. Let \mathcal{A} be a differential graded \mathcal{O}_\mathcal {C}-algebra. Let \mathcal{B} be a differential graded \mathcal{O}_\mathcal {D}-algebra. Let \varphi : \mathcal{B} \to f_*\mathcal{A} be a homomorphism of differential graded \mathcal{O}_\mathcal {D}-algebras. The right derived extension
Rf_* : D(\mathcal{A}, \text{d}) \longrightarrow D(\mathcal{B}, \text{d})of the pushforward f_* is called derived pushforward.
Comments (0)