Proof.
Observe that f^*\mathcal{A} = \mathop{\mathrm{colim}}\nolimits f^*\mathcal{A}_ i and that
f^*\mathcal{A}_ i = \mathcal{O}'\langle f^{-1}\mathcal{S}_0 \amalg \ldots \amalg f^{-1}\mathcal{S}_ i\rangle
with differential given by the inductive procedure above using f^{-1}\delta _{i + 1}. Thus it suffices to prove that \mathcal{A} is flat as a graded \mathcal{O}-module and is K-flat as a complex of \mathcal{O}-modules. For this it suffices to prove that each \mathcal{A}_ i is flat as a graded \mathcal{O}-module and is K-flat as a complex of \mathcal{O}-modules, compare with Lemma 24.23.3.
For i \geq 1 write \mathcal{S} = \mathcal{S}_0 \amalg \ldots \amalg \mathcal{S}_ i so that we have \mathcal{A}_ i = \mathcal{O}\langle \mathcal{S} \rangle as a graded \mathcal{O}-algebra. We are going to construct a filtration of this algebra by differential graded \mathcal{O}-submodules.
Set W = \mathbf{Z}_{\geq 0}^{i + 1} considered with lexicographical ordering. Namely, given w = (w_0, \ldots w_ i) and w' = (w'_0, \ldots , w'_ i) in W we say
w > w' \Leftrightarrow \exists j,\ 0 \leq j \leq i : w_ i = w'_ i,\ w_{i - 1} = w'_{i - 1},\ \ldots , \ w_{j + 1} = w'_{j + 1},\ w_ j > w'_ j
and so on. Suppose given a section s = s_1 \cdot \ldots \cdot s_ r of \mathcal{S} \times \ldots \times \mathcal{S} over U. We say that the weight of s is defined if we have s_ a \in \mathcal{S}_{j_ a}(U) for a unique 0 \leq j_ a \leq i. In this case we define the weight
w(s) = (w_0(s), \ldots , w_ i(s)) \in W,\quad w_ j(s) = |\{ a \mid j_ a = j\} |
The weight of any section of \mathcal{S} \times \ldots \times \mathcal{S} is defined locally. The reader checks easily that we obtain a disjoint union decomposition
\mathcal{S} \times \ldots \times \mathcal{S} = \coprod \nolimits _{w \in W} \left( \mathcal{S} \times \ldots \times \mathcal{S}\right)_ w
into the subsheaves of sections of a given weight. Of course only w \in W with \sum _{0 \leq j \leq i} w_ j = r show up for a given r. We correspondingly obtain a decomposition
\mathcal{A}_ i = \mathcal{O} \oplus \bigoplus \nolimits _{r \geq 1} \bigoplus \nolimits _{w \in W} \mathcal{O}[\left(\mathcal{S} \times \ldots \times \mathcal{S}\right)_ w]
The rest of the proof relies on the following trivial observation: given r, w and local section s = s_1 \cdot \ldots \cdot s_ r of \left(\mathcal{S} \times \ldots \times \mathcal{S}\right)_ w we have
\text{d}(s) \text{ is a local section of } \mathcal{O} \oplus \bigoplus \nolimits _{r' \geq 1} \bigoplus \nolimits _{w' \in W,\ w' < w} \mathcal{O}[\left(\mathcal{S} \times \ldots \times \mathcal{S}\right)_{w'}]
The reason is that in each of the expressions
(-1)^{\deg (s_1) + \ldots + \deg (s_{a - 1})} s_1 \cdot \ldots s_{a - 1} \cdot \delta (s_ a) \cdot s_{a + 1} \cdot \ldots \cdot s_ r
whose sum give the element \text{d}(s) the element \delta (s_ a) is locally a \mathcal{O}-linear combination of elements s'_1 \cdot \ldots \cdot s'_{r'} with s'_{a'} in \mathcal{S}_{j'_ a} for some 0 \leq j'_{a'} < j_ a where j_ a is such that s_ a is section of \mathcal{S}_{j_ a}.
What this means is the following. Suppose for w \in W we set
F_ w \mathcal{A}_ i = \mathcal{O} \oplus \bigoplus \nolimits _{r \geq 1} \bigoplus \nolimits _{w' \in W,\ w' \leq w} \mathcal{O}[\left(\mathcal{S} \times \ldots \times \mathcal{S}\right)_{w'}]
By the observation above this is a differential graded \mathcal{O}-submodule. We get admissible short exact sequences
0 \to \mathop{\mathrm{colim}}\nolimits _{w' < w} F_{w'}\mathcal{A}_ i \to F_ w\mathcal{A}_ i \to \bigoplus \nolimits _{r \geq 1} \mathcal{O}[\left(\mathcal{S} \times \ldots \times \mathcal{S}\right)_ w] \to 0
of differential graded \mathcal{A}-modules where the differential on the right hand side is zero.
Now we finish the proof by transfinite induction over the ordered set W. The differential graded complex F_0\mathcal{A}_0 is the summand \mathcal{O} and this is K-flat and graded flat. For w \in W if the result is true for F_{w'}\mathcal{A}_ i for w' < w, then by Lemmas 24.23.3, 24.23.2, and 24.23.6 we obtain the result for w. Finally, we have \mathcal{A}_ i = \mathop{\mathrm{colim}}\nolimits _{w \in W} F_ w\mathcal{A}_ i and we conclude.
\square
Comments (0)