The Stacks project

Lemma 56.5.4. In Lemma 56.5.2 let $F$ correspond to $\mathcal{K}$ in $\mathit{QCoh}(\mathcal{O}_{X \times _ R Y})$. We have

  1. If $f : X' \to X$ is an affine morphism, then $F \circ f_*$ corresponds to $(f \times \text{id}_ Y)^*\mathcal{K}$.

  2. If $g : Y' \to Y$ is a flat morphism, then $g^* \circ F$ corresponds to $(\text{id}_ X \times g)^*\mathcal{K}$.

  3. If $j : V \to Y$ is an open immersion, then $j^* \circ F$ corresponds to $\mathcal{K}|_{X \times _ R V}$.

Proof. Proof of (1). Consider the commutative diagram

\[ \xymatrix{ X' \times _ R Y \ar[rrd]^{\text{pr}'_2} \ar[rd]_{f \times \text{id}_ Y} \ar[dd]_{\text{pr}'_1} \\ & X \times _ R Y \ar[r]_{\text{pr}_2} \ar[d]_{\text{pr}_1} & Y \\ X' \ar[r]^ f & X } \]

Let $\mathcal{F}'$ be a quasi-coherent module on $X'$. We have

\begin{align*} \text{pr}_{2, *}(\text{pr}_1^*f_*\mathcal{F}' \otimes _{\mathcal{O}_{X \times _ R Y}} \mathcal{K}) & = \text{pr}_{2, *}((f \times \text{id}_ Y)_* (\text{pr}'_1)^*\mathcal{F}' \otimes _{\mathcal{O}_{X \times _ R Y}} \mathcal{K}) \\ & = \text{pr}_{2, *}(f \times \text{id}_ Y)_* \left((\text{pr}'_1)^*\mathcal{F}' \otimes _{\mathcal{O}_{X' \times _ R Y}} (f \times \text{id}_ Y)^*\mathcal{K})\right) \\ & = \text{pr}'_{2, *}((\text{pr}'_1)^*\mathcal{F}' \otimes _{\mathcal{O}_{X' \times _ R Y}} (f \times \text{id}_ Y)^*\mathcal{K}) \end{align*}

Here the first equality is affine base change for the left hand square in the diagram, see Cohomology of Schemes, Lemma 30.5.1. The second equality hold by Remark 56.5.3. The third equality is functoriality of pushforwards for modules. This proves (1).

Proof of (2). Consider the commutative diagram

\[ \xymatrix{ X \times _ R Y' \ar[rr]_-{\text{pr}'_2} \ar[rd]^{\text{id}_ X \times g} \ar[rdd]_{\text{pr}'_1} & & Y' \ar[d]^ g \\ & X \times _ R Y \ar[r]_-{\text{pr}_2} \ar[d]^{\text{pr}_1} & Y \\ & X } \]

We have

\begin{align*} g^*\text{pr}_{2, *}(\text{pr}_1^*\mathcal{F} \otimes _{\mathcal{O}_{X \times _ R Y}} \mathcal{K}) & = \text{pr}'_{2, *}( (\text{id}_ X \times g)^*( \text{pr}_1^*\mathcal{F} \otimes _{\mathcal{O}_{X \times _ R Y}} \mathcal{K})) \\ & = \text{pr}'_{2, *}((\text{pr}'_1)^*\mathcal{F} \otimes _{\mathcal{O}_{X \times _ R Y'}} (\text{id}_ X \times g)^*\mathcal{K}) \end{align*}

The first equality by flat base change for the square in the diagram, see Cohomology of Schemes, Lemma 30.5.2. The second equality by functoriality of pullback and the fact that a pullback of tensor products it the tensor product of the pullbacks.

Part (3) is a special case of (2). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FZF. Beware of the difference between the letter 'O' and the digit '0'.