Remark 19.13.9. Let $\mathcal{A}$ be a Grothendieck abelian category. Let $M, K$ be objects of $D(\mathcal{A})$. For any choice of complex $K^\bullet$ representing $K$ we can use the filtration $F^ pK^\bullet = \tau _{\leq -p}K^\bullet$ and the discussion in Remark 19.13.8 to get a spectral sequence with

$E_1^{p, q} = \mathop{\mathrm{Ext}}\nolimits ^{2p + q}(M, H^{-p}(K))$

This spectral sequence is independent of the choice of complex $K^\bullet$ representing $K$. After renumbering $p = -j$ and $q = i + 2j$ we find a spectral sequence $(E'_ r, d'_ r)_{r \geq 2}$ with $d'_ r$ of bidegree $(r, -r + 1)$, with

$(E'_2)^{i, j} = \mathop{\mathrm{Ext}}\nolimits ^ i(M, H^ j(K))$

If $M \in D^-(\mathcal{A})$ and $K \in D^+(\mathcal{A})$ then both $E_ r$ and $E'_ r$ are bounded and converge to $\mathop{\mathrm{Ext}}\nolimits ^{p + q}(M, K)$. If we use the filtration $F^ pK^\bullet = \sigma _{\geq p}K^\bullet$ then we get

$E_1^{p, q} = \mathop{\mathrm{Ext}}\nolimits ^ q(M, K^ p)$

If $M \in D^-(\mathcal{A})$ and $K^\bullet$ is bounded below, then this spectral sequence is bounded and converges to $\mathop{\mathrm{Ext}}\nolimits ^{p + q}(M, K)$.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).