Lemma 10.47.12. Let $K/k$ be a field extension. The following are equivalent
$K/k$ is geometrically irreducible, and
every element $\alpha \in K$ separably algebraic over $k$ is in $k$.
Lemma 10.47.12. Let $K/k$ be a field extension. The following are equivalent
$K/k$ is geometrically irreducible, and
every element $\alpha \in K$ separably algebraic over $k$ is in $k$.
Proof. Assume (1) and let $\alpha \in K$ be separably algebraic over $k$. Then $k' = k(\alpha )$ is a finite separable extension of $k$ contained in $K$. By Lemma 10.47.6 the extension $k'/k$ is geometrically irreducible. In particular, we see that the spectrum of $k' \otimes _ k \overline{k}$ is irreducible (and hence if it is a product of fields, then there is exactly one factor). By Fields, Lemma 9.13.4 it follows that $\mathop{\mathrm{Hom}}\nolimits _ k(k', \overline{k})$ has one element which in turn implies that $k' = k$ by Fields, Lemma 9.12.11. Thus (2) holds.
Assume (2). Let $k' \subset K$ be the subfield consisting of elements algebraic over $k$. By Lemma 10.47.8 the extension $K/k'$ is geometrically irreducible. By assumption $k'/k$ is a purely inseparable extension. By Lemma 10.46.7 the extension $k'/k$ is geometrically irreducible. Hence by Lemma 10.47.9 we see that $K/k$ is geometrically irreducible. $\square$
Comments (0)
There are also: