Lemma 10.133.8. Let A \to B be a ring map. The differentials \text{d} : \Omega ^ i_{B/A} \to \Omega ^{i + 1}_{B/A} are differential operators of order 1.
Proof. Given b \in B we have to show that \text{d} \circ b - b \circ \text{d} is a linear operator. Thus we have to show that
\text{d} \circ b \circ b' - b \circ \text{d} \circ b' - b' \circ \text{d} \circ b + b' \circ b \circ \text{d} = 0
To see this it suffices to check this on additive generators for \Omega ^ i_{B/A}. Thus it suffices to show that
\text{d}(bb'b_0\text{d}b_1 \wedge \ldots \wedge \text{d}b_ i) - b\text{d}(b'b_0\text{d}b_1 \wedge \ldots \wedge \text{d}b_ i) - b'\text{d}(bb_0\text{d}b_1 \wedge \ldots \wedge \text{d}b_ i) + bb'\text{d}(b_0\text{d}b_1 \wedge \ldots \wedge \text{d}b_ i)
is zero. This is a pleasant calculation using the Leibniz rule which is left to the reader. \square
Comments (0)