Lemma 20.34.13. With notation and assumptions as in Remark 20.34.12 the diagram
\[ \xymatrix{ H^ p_ Z(X, K) \ar[r] \ar[d] & H^ p_{Z'}(X', Lf^*K) \ar[d] \\ H^ p(X, K) \ar[r] & H^ p(X', Lf^*K) } \]
commutes. Here the top horizontal arrow comes from the identifications $H^ p_ Z(X, K) = H^ p(Z, R\mathcal{H}_ Z(K))$ and $H^ p_{Z'}(X', Lf^*K) = H^ p(Z', R\mathcal{H}_{Z'}(K'))$, the pullback map $H^ p(Z, R\mathcal{H}_ Z(K)) \to H^ p(Z', L(f|_{Z'})^*R\mathcal{H}_ Z(K))$, and the map constructed in Remark 20.34.12.
Proof.
Omitted. Hints: Using that $H^ p(Z, R\mathcal{H}_ Z(K)) = H^ p(X, i_*R\mathcal{H}_ Z(K))$ and similarly for $R\mathcal{H}_{Z'}(Lf^*K)$ this follows from the functoriality of the pullback maps and the commutative diagram used to define the map of Remark 20.34.12.
$\square$
Comments (2)
Comment #10715 by nkym on
Comment #10790 by Stacks project on