Lemma 50.24.2. In Situation 50.24.1 the pushforward $f_*\mathcal{O}_ X$ is a finite étale $\mathcal{O}_ S$-algebra and locally on $S$ we have $Rf_*\mathcal{O}_ X = f_*\mathcal{O}_ X \oplus P$ in $D(\mathcal{O}_ S)$ with $P$ perfect of tor amplitude in $[1, \infty )$. The map $\text{d} : f_*\mathcal{O}_ X \to f_*\Omega _{X/S}$ is zero.

**Proof.**
The first part of the statement follows from Derived Categories of Schemes, Lemma 36.32.8. Setting $S' = \underline{\mathop{\mathrm{Spec}}}_ S(f_*\mathcal{O}_ X)$ we get a factorization $X \to S' \to S$ (this is the Stein factorization, see More on Morphisms, Section 37.53, although we don't need this) and we see that $\Omega _{X/S} = \Omega _{X/S'}$ for example by Morphisms, Lemma 29.32.9 and 29.36.15. This of course implies that $\text{d} : f_*\mathcal{O}_ X \to f_*\Omega _{X/S}$ is zero.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #8670 by Sveta M on

Comment #9391 by Stacks project on

There are also: