The Stacks project

Lemma 15.84.6. Let $R$ be a ring. Let $K$ be an object of $D(R)$ with $H^ i(K) = 0$ for $i \not\in \{ -1, 0\} $. Let $K^{-1} \to K^0$ be a two term complex of $R$-modules representing $K$ such that $K^0$ is a flat $R$-module (for example projective or free). Let $R \to R'$ be a ring map. Then the complex $K^\bullet \otimes _ R R'$ represents $\tau _{\geq -1}(K \otimes _ R^\mathbf {L} R')$.

Proof. We have a distinguished triangle

\[ K^0 \to K^\bullet \to K^{-1}[1] \to K^0[1] \]

in $D(R)$. This determines a map of distinguished triangles

\[ \xymatrix{ K^0 \otimes _ R^\mathbf {L} R' \ar[d] \ar[r] & K^\bullet \otimes _ R^\mathbf {L} R' \ar[r] \ar[d] & K^{-1} \otimes _ R^\mathbf {L} R'[1] \ar[r] \ar[d] & K^0 \otimes _ R^\mathbf {L} R'[1] \ar[d] \\ K^0 \otimes _ R R' \ar[r] & K^\bullet \otimes _ R R' \ar[r] & K^{-1} \otimes _ R R'[1] \ar[r] & K^0 \otimes _ R R'[1] } \]

The left and right vertical arrows are isomorphisms as $K^0$ is flat. Since $K^{-1} \otimes _ R^\mathbf {L} R' \to K^{-1} \otimes _ R R'$ is an isomorphism on cohomology in degree $0$ we conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G9G. Beware of the difference between the letter 'O' and the digit '0'.