Lemma 15.84.9. Let I be an ideal of a ring R. Let \alpha : K \to K' be a morphism of D(R). Assume
H^ i(K) = H^ i(K') = 0 for i \not\in \{ -1, 0\}
H^0(\alpha ) is an isomorphism and H^{-1}(\alpha ) is surjective.
If K satisfies the equivalent conditions (1), (2), and (3) of Lemma 15.84.5, then K' does too.
Proof.
Set M = \mathop{\mathrm{Ker}}(H^{-1}(\alpha )). Then \alpha fits into a distinguished triangle
M[1] \to K \to K' \to M[2]
For any R-module N this determines an exact sequence
\mathop{\mathrm{Ext}}\nolimits ^0_ R(M[1], N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(K', N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ R(K, N)
Since \mathop{\mathrm{Ext}}\nolimits ^0_ R(M[1], N) = \mathop{\mathrm{Ext}}\nolimits ^{-1}_ R(M, N) = 0 we see that \mathop{\mathrm{Ext}}\nolimits ^1_ R(K', N) is a submodule of \mathop{\mathrm{Ext}}\nolimits ^1_ R(K, N). Hence if \mathop{\mathrm{Ext}}\nolimits ^1_ R(K, N) is annihilated by I so is \mathop{\mathrm{Ext}}\nolimits ^1_ R(K', N).
\square
Comments (0)