for every a \in I there exist f_1, \ldots , f_ r \in J and c \geq 0 such that
\det _{1 \leq i, j \leq r}(\partial f_ j/\partial x_ i) divides a^ c in B, and
a^ c J \subset (f_1, \ldots , f_ r) + J^2.
for every a \in I there exist f_1, \ldots , f_ r \in J and c \geq 0 such that
\det _{1 \leq i, j \leq r}(\partial f_ j/\partial x_ i) divides a^ c in B, and
a^ c J \subset (f_1, \ldots , f_ r) + J^2.
Comments (0)