The Stacks project

Proof. In the proof of Lemma 97.27.12 we have seen that $F(V) = U'(V) \amalg W(V)$ if $V$ is the spectrum of an Artinian local ring. The tangent spaces are computed entirely from evaluations of $F$ on such schemes over $S$. Hence it suffices to prove that the tangent spaces of the functors $U'$ and $W$ are finite dimensional. For $U'$ this follows from Lemma 97.8.1. Write $W = \mathop{\mathrm{colim}}\nolimits W_ n$ as in the proof of Lemma 97.27.12. Then we see that the tangent spaces of $W$ are equal to the tangent spaces of $W_2$, as to get at the tangent space we only need to evaluate $W$ on spectra of Artinian local rings $(A, \mathfrak m)$ with $\mathfrak m^2 = 0$. Then again we see that the tangent spaces of $W_2$ have finite dimension by Lemma 97.8.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GI7. Beware of the difference between the letter 'O' and the digit '0'.