The Stacks project

Lemma 15.116.3. Let $A' \subset A$ be an extension of rings. Let $f \in A'$. Assume that (a) $A$ is finite over $A'$, (b) $f$ is a nonzerodivisor on $A$, and (c) $A'_ f = A_ f$. Then there exists an integer $n_0 > 0$ such that for all $n \geq n_0$ the following is true: given a ring $B'$, a nonzerodivisor $g \in B'$, and an isomorphism $\varphi ' : A'/f^ n A' \to B'/g^ n B'$ with $\varphi '(f) \equiv g$, there is a finite extension $B' \subset B$ and an isomorphism $\varphi : A/fA \to B/gB$ compatible with $\varphi '$.

Proof. Since $A$ is finite over $A'$ and since $A'_ f = A_ f$ we can Cchoose $t > 0$ such that $f^ t A \subset A'$. Set $n_0 = 2t$. Given $n, B', g, \varphi '$ as in the statement of the lemma, denote $N \subset B'$ the set of elements $b \in B'$ such that $b \bmod g^ nB' \in \varphi '(f^ tA)$. Set $B = g^{-t}N$. As $f^ tA' \subset f^ tA$ and $\varphi '$ sends $f$ to $g$ we have $g^ tB' \subset N$, hence $B' \subset B$. Since $f^ tA \cdot f^ tA \subset f^ t \cdot f^ tA$ and $\varphi '$ sends $f$ to $g$, we see that $N \cdot N \subset g^ t N$. Hence we obtain a multiplication on $B$ extending the multiplication of $B'$. We have an isomorphism of $A'/f^ nA'$-modules

\[ A/f^ tA' \xrightarrow {f^ t} f^ tA/f^ nA' \xrightarrow {\varphi '} g^ tB/g^ nB' \xrightarrow {g^{-t}} B/g^ tB' \]

where the module structures on the right are defined using $\varphi '$. Since $A/f^ tA'$ is a finite $A'$-module, we conclude that $B/g^ tB'$ is a finite $B'$-module and hence we see that $B' \to B$ is finite. Finally, we leave it to the reader to see that the displayed isomorphism of modules sends $fA$ into $gB$ and induces an isomorphism of rings $\varphi : A/fA \to B/gB$ compatible with $\varphi '$ (it even induces an isomorphism $A/f^ tA \to B/g^ tB$ but we don't need this). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GLT. Beware of the difference between the letter 'O' and the digit '0'.