Remark 56.3.4. Let R be a ring. Let A, B, C be R-algebras. Let F : \text{Mod}_ A \to \text{Mod}_ B and F' : \text{Mod}_ B \to \text{Mod}_ C be R-linear, right exact functors which commute with arbitrary direct sums. If by the equivalence of Lemma 56.3.3 the object K in \text{Mod}_{A \otimes _ R B} corresponds to F and the object K' in \text{Mod}_{B \otimes _ R C} corresponds to F', then K \otimes _ B K' viewed as an object of \text{Mod}_{A \otimes _ R C} corresponds to F' \circ F.
Comments (0)