Remark 56.3.10. Let $A$ and $B$ be rings. Let us endow $\text{Mod}_ A$ and $\text{Mod}_ B$ with the usual monoidal structure given by tensor products of modules. Let $F : \text{Mod}_ A \to \text{Mod}_ B$ be a functor of monoidal categories, see Categories, Definition 4.43.2. Here are some comments:

1. Since $F(A)$ is a unit (by our definitions) we have $F(A) = B$.

2. We obtain a multiplicative map $\varphi : A \to B$ by sending $a \in A$ to its action on $F(A) = B$.

3. Take $A = B$ and $F(M) = M \otimes _ A M$. In this case $\varphi (a) = a^2$.

4. If $F$ is additive, then $\varphi$ is a ring map.

5. Take $A = B = \mathbf{Z}$ and $F(M) = M/\text{torsion}$. Then $\varphi = \text{id}_\mathbf {Z}$ but $F$ is not the identity functor.

6. If $F$ is right exact and commutes with direct sums, then $F(M) = M \otimes _{A, \varphi } B$ by Lemma 56.3.1.

In other words, ring maps $A \to B$ are in bijection with isomorphism classes of functors of monoidal categories $\text{Mod}_ A \to \text{Mod}_ B$ which commute with all colimits.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GP2. Beware of the difference between the letter 'O' and the digit '0'.