The Stacks project

Lemma 56.5.9. Let $R$ be a ring. Let $X$, $Y$, $Z$ be schemes over $R$. Assume $X$ and $Y$ are quasi-compact and have affine diagonal. Let

\[ F : \mathit{QCoh}(\mathcal{O}_ X) \to \mathit{QCoh}(\mathcal{O}_ Y) \quad \text{and}\quad G : \mathit{QCoh}(\mathcal{O}_ Y) \to \mathit{QCoh}(\mathcal{O}_ Z) \]

be $R$-linear exact functors which commute with arbitrary direct sums. Let $\mathcal{K}$ in $\mathit{QCoh}(\mathcal{O}_{X \times _ R Y})$ and $\mathcal{L}$ in $\mathit{QCoh}(\mathcal{O}_{Y \times _ R Z})$ be the corresponding “kernels”, see Lemma 56.5.7. Then $G \circ F$ corresponds to $\text{pr}_{13, *}(\text{pr}_{12}^*\mathcal{K} \otimes _{\mathcal{O}_{X \times _ R Y \times _ R Z}} \text{pr}_{23}^*\mathcal{L})$ in $\mathit{QCoh}(\mathcal{O}_{X \times _ R Z})$.

Proof. Since $G \circ F : \mathit{QCoh}(\mathcal{O}_ X) \to \mathit{QCoh}(\mathcal{O}_ Z)$ is $R$-linear, exact, and commutes with arbitrary direct sums, we find by Lemma 56.5.7 that there exists an $\mathcal{M}$ in $\mathit{QCoh}(\mathcal{O}_{X \times _ R Z})$ corresponding to $G \circ F$. On the other hand, denote $\mathcal{E} = \text{pr}_{13, *}(\text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L})$. Here and in the rest of the proof we omit the subscript from the tensor products. Let $U \subset X$ and $W \subset Z$ be affine open subschemes. To prove the lemma, we will construct an isomorphism

\[ \Gamma (U \times _ R W, \mathcal{E}) \cong \Gamma (U \times _ R W, \mathcal{M}) \]

compatible with restriction mappings for varying $U$ and $W$.

First, we observe that

\[ \Gamma (U \times _ R W, \mathcal{E}) = \Gamma (U \times _ R Y \times _ R W, \text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L}) \]

by construction. Thus we have to show that the same thing is true for $\mathcal{M}$.

Write $U = \mathop{\mathrm{Spec}}(A)$ and denote $j : U \to X$ the inclusion morphism. Recall from the construction of $\mathcal{M}$ in the proof of Lemma 56.5.2 that

\[ \Gamma (U \times _ R W, \mathcal{M}) = \Gamma (W, G(F(j_*\mathcal{O}_ U))) \]

where the $A$-module action on the right hand side is given by the action of $A$ on $\mathcal{O}_ U$. The correspondence between $F$ and $\mathcal{K}$ tells us that $F(j_*\mathcal{O}_ U) = b_*(a^*j_*\mathcal{O}_ U \otimes \mathcal{K})$ where $a : X \times _ R Y \to X$ and $b : X \times _ R Y \to Y$ are the projection morphisms. Since $j$ is an affine morphism, we have $a^*j_*\mathcal{O}_ U = (j \times \text{id}_ Y)_*\mathcal{O}_{U \times _ R Y}$ by Cohomology of Schemes, Lemma 30.5.1. Next, we have $(j \times \text{id}_ Y)_*\mathcal{O}_{U \times _ R Y} \otimes \mathcal{K} = (j \times \text{id}_ Y)_*\mathcal{K}|_{U \times _ R Y}$ by Remark 56.5.3 for example. Putting what we have found together we find

\[ F(j_*\mathcal{O}_ U) = (U \times _ R Y \to Y)_*\mathcal{K}|_{U \times _ R Y} \]

with obvious $A$-action. (This formula is implicit in the proof of Lemma 56.5.2.) Applying the functor $G$ we obtain

\[ G(F(j_*\mathcal{O}_ U)) = t_*(s^*((U \times _ R Y \to Y)_*\mathcal{K}|_{U \times _ R Y}) \otimes \mathcal{L}) \]

where $s : Y \times _ R Z \to Y$ and $t : Y \times _ R Z \to Z$ are the projection morphisms. Again using affine base change (Cohomology of Schemes, Lemma 30.5.1) but this time for the square

\[ \xymatrix{ U \times _ R Y \times _ R Z \ar[r] \ar[d] & U \times _ R Y \ar[d] \\ Y \times _ R Z \ar[r] & Y } \]

we obtain

\[ s^*((U \times _ R Y \to Y)_*\mathcal{K}|_{U \times _ R Y}) = (U \times _ R Y \times _ R Z \to Y \times _ R Z)_* \text{pr}_{12}^*\mathcal{K}|_{U \times _ R Y \times _ R Z} \]

Using Remark 56.5.3 again we find

\begin{align*} (U \times _ R Y \times _ R Z \to Y \times _ R Z)_* \text{pr}_{12}^*\mathcal{K}|_{U \times _ R Y \times _ R Z} \otimes \mathcal{L} \\ = (U \times _ R Y \times _ R Z \to Y \times _ R Z)_* \left(\text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L}\right)|_{U \times _ R Y \times _ R Z} \end{align*}

Applying the functor $\Gamma (W, t_*(-)) = \Gamma (Y \times _ R W, -)$ to this we obtain

\begin{align*} \Gamma (U \times _ R W, \mathcal{M}) & = \Gamma (W, G(F(j_*\mathcal{O}_ U))) \\ & = \Gamma (Y \times _ R W, (U \times _ R Y \times _ R Z \to Y \times _ R Z)_* (\text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L})|_{U \times _ R Y \times _ R Z}) \\ & = \Gamma (U \times _ R Y \times _ R W, \text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L}) \end{align*}

as desired. We omit the verication that these isomorphisms are compatible with restriction mappings. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GPC. Beware of the difference between the letter 'O' and the digit '0'.