Lemma 15.120.1. Let (R, \mathfrak m, \kappa ) be a local ring. Let 0 \to (M, \varphi ) \to (M', \varphi ') \to (M'', \varphi '') \to 0 be a short exact sequence in the category discussed above. Then
\det \nolimits _\kappa (\varphi ') = \det \nolimits _\kappa (\varphi )\det \nolimits _\kappa (\varphi ''),\quad \text{Trace}_\kappa (\varphi ') = \text{Trace}_\kappa (\varphi ) + \text{Trace}_\kappa (\varphi '')
Also, the characteristic polynomial of \varphi ' over \kappa is the product of the characteristic polynomials of \varphi and \varphi ''.
Comments (0)