Lemma 42.35.6. Let (S, \delta ) be as in Situation 42.7.1. Let f : X \to Y be a morphism of schemes locally of finite type over S. Let g : Y' \to Y be an envelope (Definition 42.22.1) and denote X' = Y' \times _ Y X. Let p \in \mathbf{Z} and let c' \in A^ p(X' \to Y'). If the two restrictions
res_1(c') = res_2(c') \in A^ p(X' \times _ X X' \to Y' \times _ Y Y')
are equal (see proof), then there exists a unique c \in A^ p(X \to Y) whose restriction res(c) = c' in A^ p(X' \to Y').
Proof.
We have a commutative diagram
\xymatrix{ X' \times _ X X' \ar[d]^{f''} \ar@<1ex>[r]^-a \ar@<-1ex>[r]_-b & X' \ar[d]^{f'} \ar[r]_ h & X \ar[d]^ f \\ Y' \times _ Y Y' \ar@<1ex>[r]^-p \ar@<-1ex>[r]_-q & Y' \ar[r]^ g & Y }
The element res_1(c') is the restriction (see Remark 42.33.5) of c' for the cartesian square with morphisms a, f', p, f'' and the element res_2(c') is the restriction of c' for the cartesian square with morphisms b, f', q, f''. Assume res_1(c') = res_2(c') and let \beta \in \mathop{\mathrm{CH}}\nolimits _ k(Y). By Lemma 42.22.4 we can find a \beta ' \in \mathop{\mathrm{CH}}\nolimits _ k(Y') with g_*\beta ' = \beta . Then we set
c \cap \beta = h_*(c' \cap \beta ')
To see that this is independent of the choice of \beta ' it suffices to show that h_*(c' \cap (p_*\gamma - q_*\gamma )) is zero for \gamma \in \mathop{\mathrm{CH}}\nolimits _ k(Y' \times _ Y Y'). Since c' is a bivariant class we have
h_*(c' \cap (p_*\gamma - q_*\gamma )) = h_*(a_*(c' \cap \gamma ) - b_*(c' \cap \gamma )) = 0
the last equality since h_* \circ a_* = h_* \circ b_* as h \circ a = h \circ b.
Observe that our choice for c \cap \beta is forced by the requirement that res(c) = c' and the compatibility of bivariant classes with proper pushforward.
Of course, in order to define the bivariant class c we need to construct maps c \cap -: \mathop{\mathrm{CH}}\nolimits _ k(Y_1) \to \mathop{\mathrm{CH}}\nolimits _{k + p}(Y_1 \times _ Y X) for any morphism Y_1 \to Y locally of finite type satisfying the conditions listed in Definition 42.33.1. Denote Y'_1 = Y' \times _ Y Y_1, X_1 = X \times _ Y Y_1. The morphism Y'_1 \to Y_1 is an envelope by Lemma 42.22.3. Hence we can use the base changed diagram
\xymatrix{ X'_1 \times _{X_1} X'_1 \ar[d]^{f''_1} \ar@<1ex>[r]^-{a_1} \ar@<-1ex>[r]_-{b_1} & X'_1 \ar[d]^{f'_1} \ar[r]_{h_1} & X_1 \ar[d]^{f_1} \\ Y'_1 \times _{Y_1} Y'_1 \ar@<1ex>[r]^-{p_1} \ar@<-1ex>[r]_-{q_1} & Y'_1 \ar[r]^{g_1} & Y_1 }
and the same arguments to get a well defined map c \cap - : \mathop{\mathrm{CH}}\nolimits _ k(Y_1) \to \mathop{\mathrm{CH}}\nolimits _{k + p}(X_1) as before.
Next, we have to check conditions (1), (2), and (3) of Definition 42.33.1 for c. For example, suppose that t : Y_2 \to Y_1 is a proper morphism of schemes locally of finite type over Y. Denote as above the base changes of the first diagram to Y_1, resp. Y_2, by subscripts {}_1, resp. {}_2. Denote t' : Y'_2 \to Y'_1, s : X_2 \to X_1, and s' : X'_2 \to X'_1 the base changes of t to Y', X, and X'. We have to show that
s_*(c \cap \beta _2) = c \cap t_*\beta _2
for \beta _2 \in \mathop{\mathrm{CH}}\nolimits _ k(Y_2). Choose \beta '_2 \in \mathop{\mathrm{CH}}\nolimits _ k(Y'_2) with g_{2, *}\beta '_2 = \beta _2. Since c' is a bivariant class and the diagrams
\vcenter { \xymatrix{ X'_2 \ar[d]_{s'} \ar[r]_{h_2} & X_2 \ar[d]^ s \\ X'_1 \ar[r]^{h_1} & X_1 } } \quad \text{and}\quad \vcenter { \xymatrix{ X'_2 \ar[d]_{s'} \ar[r]_{f'_2} & Y'_2 \ar[d]^{t'} \\ X'_2 \ar[r]^{f'_1} & Y'_1 } }
are cartesian we have
s_*(c \cap \beta _2) = s_*(h_{2, *}(c' \cap \beta '_2)) = h_{1, *}s'_*(c' \cap \beta '_2) = h_{1, *}(c' \cap (t'_*\beta '_2))
and the final expression computes c \cap t_*\beta _2 by construction: t'_*\beta '_2 \in \mathop{\mathrm{CH}}\nolimits _ k(Y'_1) is a class whose image by g_{1, *} is t_*\beta _2. This proves condition (1). The other conditions are proved in the same manner and we omit the detailed arguments.
\square
Comments (0)