Processing math: 100%

The Stacks project

Lemma 42.35.6. Let (S, \delta ) be as in Situation 42.7.1. Let f : X \to Y be a morphism of schemes locally of finite type over S. Let g : Y' \to Y be an envelope (Definition 42.22.1) and denote X' = Y' \times _ Y X. Let p \in \mathbf{Z} and let c' \in A^ p(X' \to Y'). If the two restrictions

res_1(c') = res_2(c') \in A^ p(X' \times _ X X' \to Y' \times _ Y Y')

are equal (see proof), then there exists a unique c \in A^ p(X \to Y) whose restriction res(c) = c' in A^ p(X' \to Y').

Proof. We have a commutative diagram

\xymatrix{ X' \times _ X X' \ar[d]^{f''} \ar@<1ex>[r]^-a \ar@<-1ex>[r]_-b & X' \ar[d]^{f'} \ar[r]_ h & X \ar[d]^ f \\ Y' \times _ Y Y' \ar@<1ex>[r]^-p \ar@<-1ex>[r]_-q & Y' \ar[r]^ g & Y }

The element res_1(c') is the restriction (see Remark 42.33.5) of c' for the cartesian square with morphisms a, f', p, f'' and the element res_2(c') is the restriction of c' for the cartesian square with morphisms b, f', q, f''. Assume res_1(c') = res_2(c') and let \beta \in \mathop{\mathrm{CH}}\nolimits _ k(Y). By Lemma 42.22.4 we can find a \beta ' \in \mathop{\mathrm{CH}}\nolimits _ k(Y') with g_*\beta ' = \beta . Then we set

c \cap \beta = h_*(c' \cap \beta ')

To see that this is independent of the choice of \beta ' it suffices to show that h_*(c' \cap (p_*\gamma - q_*\gamma )) is zero for \gamma \in \mathop{\mathrm{CH}}\nolimits _ k(Y' \times _ Y Y'). Since c' is a bivariant class we have

h_*(c' \cap (p_*\gamma - q_*\gamma )) = h_*(a_*(c' \cap \gamma ) - b_*(c' \cap \gamma )) = 0

the last equality since h_* \circ a_* = h_* \circ b_* as h \circ a = h \circ b.

Observe that our choice for c \cap \beta is forced by the requirement that res(c) = c' and the compatibility of bivariant classes with proper pushforward.

Of course, in order to define the bivariant class c we need to construct maps c \cap -: \mathop{\mathrm{CH}}\nolimits _ k(Y_1) \to \mathop{\mathrm{CH}}\nolimits _{k + p}(Y_1 \times _ Y X) for any morphism Y_1 \to Y locally of finite type satisfying the conditions listed in Definition 42.33.1. Denote Y'_1 = Y' \times _ Y Y_1, X_1 = X \times _ Y Y_1. The morphism Y'_1 \to Y_1 is an envelope by Lemma 42.22.3. Hence we can use the base changed diagram

\xymatrix{ X'_1 \times _{X_1} X'_1 \ar[d]^{f''_1} \ar@<1ex>[r]^-{a_1} \ar@<-1ex>[r]_-{b_1} & X'_1 \ar[d]^{f'_1} \ar[r]_{h_1} & X_1 \ar[d]^{f_1} \\ Y'_1 \times _{Y_1} Y'_1 \ar@<1ex>[r]^-{p_1} \ar@<-1ex>[r]_-{q_1} & Y'_1 \ar[r]^{g_1} & Y_1 }

and the same arguments to get a well defined map c \cap - : \mathop{\mathrm{CH}}\nolimits _ k(Y_1) \to \mathop{\mathrm{CH}}\nolimits _{k + p}(X_1) as before.

Next, we have to check conditions (1), (2), and (3) of Definition 42.33.1 for c. For example, suppose that t : Y_2 \to Y_1 is a proper morphism of schemes locally of finite type over Y. Denote as above the base changes of the first diagram to Y_1, resp. Y_2, by subscripts {}_1, resp. {}_2. Denote t' : Y'_2 \to Y'_1, s : X_2 \to X_1, and s' : X'_2 \to X'_1 the base changes of t to Y', X, and X'. We have to show that

s_*(c \cap \beta _2) = c \cap t_*\beta _2

for \beta _2 \in \mathop{\mathrm{CH}}\nolimits _ k(Y_2). Choose \beta '_2 \in \mathop{\mathrm{CH}}\nolimits _ k(Y'_2) with g_{2, *}\beta '_2 = \beta _2. Since c' is a bivariant class and the diagrams

\vcenter { \xymatrix{ X'_2 \ar[d]_{s'} \ar[r]_{h_2} & X_2 \ar[d]^ s \\ X'_1 \ar[r]^{h_1} & X_1 } } \quad \text{and}\quad \vcenter { \xymatrix{ X'_2 \ar[d]_{s'} \ar[r]_{f'_2} & Y'_2 \ar[d]^{t'} \\ X'_2 \ar[r]^{f'_1} & Y'_1 } }

are cartesian we have

s_*(c \cap \beta _2) = s_*(h_{2, *}(c' \cap \beta '_2)) = h_{1, *}s'_*(c' \cap \beta '_2) = h_{1, *}(c' \cap (t'_*\beta '_2))

and the final expression computes c \cap t_*\beta _2 by construction: t'_*\beta '_2 \in \mathop{\mathrm{CH}}\nolimits _ k(Y'_1) is a class whose image by g_{1, *} is t_*\beta _2. This proves condition (1). The other conditions are proved in the same manner and we omit the detailed arguments. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.