The Stacks project

Lemma 42.46.4. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $E \in D(\mathcal{O}_ X)$ be a perfect object. If one of the following conditions hold, then the Chern classes of $E$ are defined:

  1. there exists an envelope $f : Y \to X$ such that $Lf^*E$ is isomorphic in $D(\mathcal{O}_ Y)$ to a locally bounded complex of finite locally free $\mathcal{O}_ Y$-modules,

  2. $E$ can be represented by a bounded complex of finite locally free $\mathcal{O}_ X$-modules,

  3. the irreducible components of $X$ are quasi-compact,

  4. $X$ is quasi-compact,

  5. there exists a morphism $X \to X'$ of schemes locally of finite type over $S$ such that $E$ is the pullback of a perfect object $E'$ on $X'$ whose chern classes are defined, or

  6. add more here.

Proof. Condition (1) is just Definition 42.46.3 part (1). Condition (2) implies (1).

As in (3) assume the irreducible components $X_ i$ of $X$ are quasi-compact. We view $X_ i$ as a reduced integral closed subscheme over $X$. The morphism $\coprod X_ i \to X$ is an envelope. For each $i$ there exists an envelope $X'_ i \to X_ i$ such that $X'_ i$ has an ample family of invertible modules, see More on Morphisms, Proposition 37.80.3. Observe that $f : Y = \coprod X'_ i \to X$ is an envelope; small detail omitted. By Derived Categories of Schemes, Lemma 36.36.7 each $X'_ i$ has the resolution property. Thus the perfect object $L(f|_{X'_ i})^*E$ of $D(\mathcal{O}_{X'_ i})$ can be represented by a bounded complex of finite locally free $\mathcal{O}_{X'_ i}$-modules, see Derived Categories of Schemes, Lemma 36.37.2. This proves (3) implies (1).

Part (4) implies (3).

Let $g : X \to X'$ and $E'$ be as in part (5). Then there exists an envelope $f' : Y' \to X'$ such that $L(f')^*E'$ is represented by a locally bounded complex $(\mathcal{E}')^\bullet $ of $\mathcal{O}_{Y'}$-modules. Then the base change $f : Y \to X$ is an envelope by Lemma 42.22.3. Moreover, the pulllback $\mathcal{E}^\bullet = g^*(\mathcal{E}')^\bullet $ represents $Lf^*E$ and we see that the chern classes of $E$ are defined. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GUE. Beware of the difference between the letter 'O' and the digit '0'.