Situation 15.127.1. Here $R$ is a ring and $M$ is a finitely presented $R$-module. Denote $\Omega \subset \mathop{\mathrm{Spec}}(R)$ the set of closed points with the induced topology. For $x \in \Omega $ denote $M(x) = M/xM$ the fibre of $M$ at $x$. This is a finite dimensional vector space over the residue field $\kappa (x)$ at $x$. Given $s \in M$ we denote $s(x)$ the image of $s$ in $M(x)$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)