Lemma 96.25.2. Let $p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids. Let $\mathcal{F}$ be an $\mathcal{O}$-module on $\mathcal{X}_{affine}$. The following are equivalent
for every morphism $x \to x'$ of $\mathcal{X}_{affine}$ such that $p(x) \to p(x')$ is an étale morphism (of affine schemes), the map $\mathcal{F}(x') \otimes _{\mathcal{O}(x')} \mathcal{O}(x) \to \mathcal{F}(x)$ is an isomorphism,
$\mathcal{F}$ is a sheaf for the étale topology on $\mathcal{X}_{affine}$ and for every object $x$ of $\mathcal{X}_{affine}$ the restriction $x^*\mathcal{F}|_{U_{affine, {\acute{e}tale}}}$ is quasi-coherent where $U = p(x)$,
$\mathcal{F}$ corresponds to a locally quasi-coherent module on $\mathcal{X}$ via the equivalence (96.24.3.1) for the étale topology.
Comments (0)