Remark 13.5.3. In the presence of MS1 and MS6, condition MS5 is equivalent to asking $s[n] \in S$ for all $s \in S$ and $n \in \mathbf{Z}$. For example, suppose MS5 holds, we have $s \in S$, and we want to show $s[-1] \in S$. This isn't immediate because $s[-1][1]$ is not equal to $s$, only isomorphic to $s$ as an arrow of $\mathcal{D}$. Still, this does imply that $s[-1][1] = f \circ s \circ g$ for isomorphisms $f$, $g$. By Lemma 13.5.2 (1) we find $f, g \in S$, hence $s[-1][1] \in S$ by MS1, hence $s[-1] \in S$ by MS5. We leave a complete proof to the reader as an exercise.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: