Processing math: 100%

The Stacks project

Example 20.39.3. Let (X, \mathcal{O}_ X) be a ringed space. Let A \to \Gamma (X, \mathcal{O}_ X) be a ring map and let f \in A. Let \mathcal{F} be an \mathcal{O}_ X-module. Assume there is a c such that \mathcal{F}[f^ c] = \mathcal{F}[f^ n] for all n \geq c. We are going to apply Lemma 20.39.1 with E = \mathcal{F}. By Lemma 20.39.2 we see that the inverse system (E_ n) is pro-isomorphic to the inverse system (\mathcal{F}/f^ n\mathcal{F}). We conclude that for p \in \mathbf{Z} we obtain a commutative diagram

\xymatrix{ & 0 & 0 \\ 0 \ar[r] & \widehat{H^ p(X, \mathcal{F})} \ar[r] \ar[u] & \mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F}/f^ n\mathcal{F}) \ar[r] \ar[u] & T_ f(H^{p + 1}(X, \mathcal{F})) \ar[r] & 0 \\ 0 \ar[r] & H^0(H^ p(X, \mathcal{F})^\wedge ) \ar[r] \ar[u] & H^ p(R\Gamma (X, \mathcal{F})^\wedge ) \ar[r] \ar[u] & T_ f(H^{p + 1}(X, \mathcal{F})) \ar[r] \ar@{=}[u] & 0 \\ & R^1\mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F})[f^ n] \ar[u] \ar[r]^\cong & R^1\mathop{\mathrm{lim}}\nolimits H^{p - 1}(X, \mathcal{F}/f^ n\mathcal{F}) \ar[u] \\ & 0 \ar[u] & 0 \ar[u] }

with exact rows and columns where \widehat{H^ p(X, \mathcal{F})} = \mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F})/f^ n H^ p(X, \mathcal{F}) is the usual f-adic completion and M^\wedge denotes derived f-adic completion for M in D(A).


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.