The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

6.20 Sheafification of presheaves of modules

Lemma 6.20.1. Let $X$ be a topological space. Let $\mathcal{O}$ be a presheaf of rings on $X$. Let $\mathcal{F}$ be a presheaf $\mathcal{O}$-modules. Let $\mathcal{O}^\# $ be the sheafification of $\mathcal{O}$. Let $\mathcal{F}^\# $ be the sheafification of $\mathcal{F}$ as a presheaf of abelian groups. There exists a map of sheaves of sets

\[ \mathcal{O}^\# \times \mathcal{F}^\# \longrightarrow \mathcal{F}^\# \]

which makes the diagram

\[ \xymatrix{ \mathcal{O} \times \mathcal{F} \ar[r] \ar[d] & \mathcal{F} \ar[d] \\ \mathcal{O}^\# \times \mathcal{F}^\# \ar[r] & \mathcal{F}^\# } \]

commute and which makes $\mathcal{F}^\# $ into a sheaf of $\mathcal{O}^\# $-modules. In addition, if $\mathcal{G}$ is a sheaf of $\mathcal{O}^\# $-modules, then any morphism of presheaves of $\mathcal{O}$-modules $\mathcal{F} \to \mathcal{G}$ (into the restriction of $\mathcal{G}$ to a $\mathcal{O}$-module) factors uniquely as $\mathcal{F} \to \mathcal{F}^\# \to \mathcal{G}$ where $\mathcal{F}^\# \to \mathcal{G}$ is a morphism of $\mathcal{O}^\# $-modules.

Proof. Omitted. $\square$

This actually means that the functor $i : \textit{Mod}(\mathcal{O}^\# ) \to \textit{PMod}(\mathcal{O})$ (combining restriction and including sheaves into presheaves) and the sheafification functor of the lemma ${}^\# : \textit{PMod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}^\# )$ are adjoint. In a formula

\[ \mathop{Mor}\nolimits _{\textit{PMod}(\mathcal{O})}(\mathcal{F}, i\mathcal{G}) = \mathop{Mor}\nolimits _{\textit{Mod}(\mathcal{O}^\# )}(\mathcal{F}^\# , \mathcal{G}) \]

Let $X$ be a topological space. Let $\mathcal{O}_1 \to \mathcal{O}_2$ be a morphism of sheaves of rings on $X$. In Section 6.6 we defined a restriction functor and a change of rings functor on presheaves of modules associated to this situation.

If $\mathcal{F}$ is a sheaf of $\mathcal{O}_2$-modules then the restriction $\mathcal{F}_{\mathcal{O}_1}$ of $\mathcal{F}$ is clearly a sheaf of $\mathcal{O}_1$-modules. We obtain the restriction functor

\[ \textit{Mod}(\mathcal{O}_2) \longrightarrow \textit{Mod}(\mathcal{O}_1) \]

On the other hand, given a sheaf of $\mathcal{O}_1$-modules $\mathcal{G}$ the presheaf of $\mathcal{O}_2$-modules $\mathcal{O}_2 \otimes _{p, \mathcal{O}_1} \mathcal{G}$ is in general not a sheaf. Hence we define the tensor product sheaf $\mathcal{O}_2 \otimes _{\mathcal{O}_1} \mathcal{G}$ by the formula

\[ \mathcal{O}_2 \otimes _{\mathcal{O}_1} \mathcal{G} = (\mathcal{O}_2 \otimes _{p, \mathcal{O}_1} \mathcal{G})^\# \]

as the sheafification of our construction for presheaves. We obtain the change of rings functor

\[ \textit{Mod}(\mathcal{O}_1) \longrightarrow \textit{Mod}(\mathcal{O}_2) \]

Lemma 6.20.2. With $X$, $\mathcal{O}_1$, $\mathcal{O}_2$, $\mathcal{F}$ and $\mathcal{G}$ as above there exists a canonical bijection

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_1}(\mathcal{G}, \mathcal{F}_{\mathcal{O}_1}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_2}( \mathcal{O}_2 \otimes _{\mathcal{O}_1} \mathcal{G}, \mathcal{F} ) \]

In other words, the restriction and change of rings functors are adjoint to each other.

Proof. This follows from Lemma 6.6.2 and the fact that $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_2}( \mathcal{O}_2 \otimes _{\mathcal{O}_1} \mathcal{G}, \mathcal{F} ) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_2}( \mathcal{O}_2 \otimes _{p, \mathcal{O}_1} \mathcal{G}, \mathcal{F} )$ because $\mathcal{F}$ is a sheaf. $\square$

Lemma 6.20.3. Let $X$ be a topological space. Let $\mathcal{O} \to \mathcal{O}'$ be a morphism of sheaves of rings on $X$. Let $\mathcal{F}$ be a sheaf $\mathcal{O}$-modules. Let $x \in X$. We have

\[ \mathcal{F}_ x \otimes _{\mathcal{O}_ x} \mathcal{O}'_ x = (\mathcal{F} \otimes _\mathcal {O} \mathcal{O}')_ x \]

as $\mathcal{O}'_ x$-modules.

Proof. Follows directly from Lemma 6.14.2 and the fact that taking stalks commutes with sheafification. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0088. Beware of the difference between the letter 'O' and the digit '0'.