Definition 10.12.6. An abelian group $N$ is called an *$(A, B)$-bimodule* if it is both an $A$-module and a $B$-module, and the actions $A \to End(M)$ and $B \to End(M)$ are compatible in the sense that $(ax)b = a(xb)$ for all $a\in A, b\in B, x\in N$. Usually we denote it as $_ AN_ B$.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (1)

Comment #8367 by Laurent Moret-Bailly on

There are also: