The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.8.2. Let $(M_ i, \mu _{ij})$ be a system of $R$-modules over the preordered set $I$. The colimit of the system $(M_ i, \mu _{ij})$ is the quotient $R$-module $(\bigoplus _{i\in I} M_ i) /Q$ where $Q$ is the $R$-submodule generated by all elements

\[ \iota _ i(x_ i) - \iota _ j(\mu _{ij}(x_ i)) \]

where $\iota _ i : M_ i \to \bigoplus _{i\in I} M_ i$ is the natural inclusion. We denote the colimit $M = \mathop{\mathrm{colim}}\nolimits _ i M_ i$. We denote $\pi : \bigoplus _{i\in I} M_ i \to M$ the projection map and $\phi _ i = \pi \circ \iota _ i : M_ i \to M$.

Proof. This lemma is a special case of Categories, Lemma 4.14.11 but we will also prove it directly in this case. Namely, note that $\phi _ i = \phi _ j\circ \mu _{ij}$ in the above construction. To show the pair $(M, \phi _ i)$ is the colimit we have to show it satisfies the universal property: for any other such pair $(Y, \psi _ i)$ with $\psi _ i : M_ i \to Y$, $\psi _ i = \psi _ j\circ \mu _{ij}$, there is a unique $R$-module homomorphism $g : M \to Y$ such that the following diagram commutes:

\[ \xymatrix{ M_ i \ar[rr]^{\mu _{ij}} \ar[dr]^{\phi _ i} \ar[ddr]_{\psi _ i} & & M_ j\ar[dl]_{\phi _ j} \ar[ddl]^{\psi _ j} \\ & M \ar[d]^{g}\\ & Y } \]

And this is clear because we can define $g$ by taking the map $\psi _ i$ on the summand $M_ i$ in the direct sum $\bigoplus M_ i$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00D5. Beware of the difference between the letter 'O' and the digit '0'.