Lemma 10.20.2. Let $R_1$ and $R_2$ be rings. Let $R = R_1 \times R_2$. The maps $R \to R_1$, $(x, y) \mapsto x$ and $R \to R_2$, $(x, y) \mapsto y$ induce continuous maps $\mathop{\mathrm{Spec}}(R_1) \to \mathop{\mathrm{Spec}}(R)$ and $\mathop{\mathrm{Spec}}(R_2) \to \mathop{\mathrm{Spec}}(R)$. The induced map

is a homeomorphism. In other words, the spectrum of $R = R_1\times R_2$ is the disjoint union of the spectrum of $R_1$ and the spectrum of $R_2$.

## Comments (0)