The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.22.3. Let $R \to S$ be a ring map. Suppose that $g_1, \ldots , g_ n$ is a finite list of elements of $S$ such that $\bigcup D(g_ i) = \mathop{\mathrm{Spec}}(S)$ in other words $(g_1, \ldots , g_ n) = S$.

  1. If each $S_{g_ i}$ is of finite type over $R$, then $S$ is of finite type over $R$.

  2. If each $S_{g_ i}$ is of finite presentation over $R$, then $S$ is of finite presentation over $R$.

Proof. Choose $h_1, \ldots , h_ n \in S$ such that $\sum h_ i g_ i = 1$.

Proof of (1). For each $i$ choose a finite list of elements $x_{i, j} \in S_{g_ i}$, $j = 1, \ldots , m_ i$ which generate $S_{g_ i}$ as an $R$-algebra. Write $x_{i, j} = y_{i, j}/g_ i^{n_{i, j}}$ for some $y_{i, j} \in S$ and some $n_{i, j} \ge 0$. Consider the $R$-subalgebra $S' \subset S$ generated by $g_1, \ldots , g_ n$, $h_1, \ldots , h_ n$ and $y_{i, j}$, $i = 1, \ldots , n$, $j = 1, \ldots , m_ i$. Since localization is exact (Proposition 10.9.12), we see that $S'_{g_ i} \to S_{g_ i}$ is injective. On the other hand, it is surjective by our choice of $y_{i, j}$. The elements $g_1, \ldots , g_ n$ generate the unit ideal in $S'$ as $h_1, \ldots , h_ n \in S'$. Thus $S' \to S$ viewed as an $S'$-module map is an isomorphism by Lemma 10.22.2.

Proof of (2). We already know that $S$ is of finite type. Write $S = R[x_1, \ldots , x_ m]/J$ for some ideal $J$. For each $i$ choose a lift $g'_ i \in R[x_1, \ldots , x_ m]$ of $g_ i$ and we choose a lift $h'_ i \in R[x_1, \ldots , x_ m]$ of $h_ i$. Then we see that

\[ S_{g_ i} = R[x_1, \ldots , x_ m, y_ i]/J_ i + (1 - y_ ig'_ i) \]

where $J_ i$ is the ideal of $R[x_1, \ldots , x_ m, y_ i]$ generated by $J$. Small detail omitted. By Lemma 10.6.3 we may choose a finite list of elements $f_{i, j} \in J$, $j = 1, \ldots , m_ i$ such that the images of $f_{i, j}$ in $J_ i$ and $1 - y_ ig'_ i$ generate the ideal $J_ i + (1 - y_ ig'_ i)$. Set

\[ S' = R[x_1, \ldots , x_ m]/(\sum h'_ ig'_ i - 1, f_{i, j}; i = 1, \ldots , n, j = 1, \ldots , m_ i) \]

There is a surjective $R$-algebra map $S' \to S$. The classes of the elements $g'_1, \ldots , g'_ n$ in $S'$ generate the unit ideal and by construction the maps $S'_{g'_ i} \to S_{g_ i}$ are injective. Thus we conclude as in part (1). $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 10.22: Glueing properties

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00EP. Beware of the difference between the letter 'O' and the digit '0'.