Example 10.27.1. In this example we describe $X = \mathop{\mathrm{Spec}}(\mathbf{Z}[x]/(x^2 - 4))$. Let $\mathfrak {p}$ be an arbitrary prime in $X$. Let $\phi : \mathbf{Z} \to \mathbf{Z}[x]/(x^2 - 4)$ be the natural ring map. Then, $\phi ^{-1}(\mathfrak p)$ is a prime in $\mathbf{Z}$. If $\phi ^{-1}(\mathfrak p) = (2)$, then since $\mathfrak p$ contains $2$, it corresponds to a prime ideal in $\mathbf{Z}[x]/(x^2 - 4, 2) \cong (\mathbf{Z}/2\mathbf{Z})[x]/(x^2)$ via the map $\mathbf{Z}[x]/(x^2 - 4) \to \mathbf{Z}[x]/(x^2 - 4, 2)$. Any prime in $(\mathbf{Z}/2\mathbf{Z})[x]/(x^2)$ corresponds to a prime in $(\mathbf{Z}/2\mathbf{Z})[x]$ containing $(x^2)$. Such primes will then contain $x$. Since $(\mathbf{Z}/2\mathbf{Z}) \cong (\mathbf{Z}/2\mathbf{Z})[x]/(x)$ is a field, $(x)$ is a maximal ideal. Since any prime contains $(x)$ and $(x)$ is maximal, the ring contains only one prime $(x)$. Thus, in this case, $\mathfrak p = (2, x)$. Now, if $\phi ^{-1}(\mathfrak p) = (q)$ for $q > 2$, then since $\mathfrak p$ contains $q$, it corresponds to a prime ideal in $\mathbf{Z}[x]/(x^2 - 4, q) \cong (\mathbf{Z}/q\mathbf{Z})[x]/(x^2 - 4)$ via the map $\mathbf{Z}[x]/(x^2 - 4) \to \mathbf{Z}[x]/(x^2 - 4, q)$. Any prime in $(\mathbf{Z}/q\mathbf{Z})[x]/(x^2 - 4)$ corresponds to a prime in $(\mathbf{Z}/q\mathbf{Z})[x]$ containing $(x^2 - 4) = (x -2)(x + 2)$. Hence, these primes must contain either $x -2$ or $x + 2$. Since $(\mathbf{Z}/q\mathbf{Z})[x]$ is a PID, all nonzero primes are maximal, and so there are precisely 2 primes in $(\mathbf{Z}/q\mathbf{Z})[x]$ containing $(x-2)(x + 2)$, namely $(x-2)$ and $(x + 2)$. In conclusion, there exist two primes $(q, x-2)$ and $(q, x + 2)$ since $2 \neq -2 \in \mathbf{Z}/(q)$. Finally, we treat the case where $\phi ^{-1}(\mathfrak p) = (0)$. Notice that $\mathfrak p$ corresponds to a prime ideal in $\mathbf{Z}[x]$ that contains $(x^2 - 4) = (x -2)(x + 2)$. Hence, $\mathfrak p$ contains either $(x-2)$ or $(x + 2)$. Hence, $\mathfrak p$ corresponds to a prime in $\mathbf{Z}[x]/(x - 2)$ or one in $\mathbf{Z}[x]/(x + 2)$ that intersects $\mathbf{Z}$ only at $0$, by assumption. Since $\mathbf{Z}[x]/(x - 2) \cong \mathbf{Z}$ and $\mathbf{Z}[x]/(x + 2) \cong \mathbf{Z}$, this means that $\mathfrak p$ must correspond to $0$ in one of these rings. Thus, $\mathfrak p = (x - 2)$ or $\mathfrak p = (x + 2)$ in the original ring.

Comment #45 by Rankeya on

In the second to last line of this example, Z[x]/(x-2) should be Z[x]/(x+2).

There are also:

• 2 comment(s) on Section 10.27: Examples of spectra of rings

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).