Lemma 10.29.4. Let $R$ be a ring and let $T \subset \mathop{\mathrm{Spec}}(R)$ be constructible. Then there exists a ring map $R \to S$ of finite presentation such that $T$ is the image of $\mathop{\mathrm{Spec}}(S)$ in $\mathop{\mathrm{Spec}}(R)$.
Proof. The spectrum of a finite product of rings is the disjoint union of the spectra, see Lemma 10.21.2. Hence if $T = T_1 \cup T_2$ and the result holds for $T_1$ and $T_2$, then the result holds for $T$. By Lemma 10.29.3 we may assume that $T = D(f) \cap V(g_1, \ldots , g_ m)$. In this case $T$ is the image of the map $\mathop{\mathrm{Spec}}((R/(g_1, \ldots , g_ m))_ f) \to \mathop{\mathrm{Spec}}(R)$, see Lemmas 10.17.6 and 10.17.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (3)
Comment #4937 by awllower on
Comment #4938 by Laurent Moret-Bailly on
Comment #5203 by Johan on
There are also: