Lemma 10.30.5. Let $R \subset S$ be an injective ring map. Then $\mathop{\mathrm{Spec}}(S) \to \mathop{\mathrm{Spec}}(R)$ hits all the minimal primes.

**Proof.**
Let $\mathfrak p \subset R$ be a minimal prime. In this case $R_{\mathfrak p}$ has a unique prime ideal. Hence it suffices to show that $S_{\mathfrak p}$ is not zero. And this follows from the fact that localization is exact, see Proposition 10.9.12.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (6)

Comment #4211 by Aaron on

Comment #4393 by Johan on

Comment #6009 by Ivan on

Comment #6010 by Fan on

Comment #6012 by Ivan on

Comment #6014 by Ivan on