Lemma 10.36.20. Suppose $R \to S$ is integral. Let $\mathfrak q, \mathfrak q' \in \mathop{\mathrm{Spec}}(S)$ be distinct primes having the same image in $\mathop{\mathrm{Spec}}(R)$. Then neither $\mathfrak q \subset \mathfrak q'$ nor $\mathfrak q' \subset \mathfrak q$.

**Proof.**
Let $\mathfrak p \subset R$ be the image. By Remark 10.17.8 the primes $\mathfrak q, \mathfrak q'$ correspond to ideals in $S \otimes _ R \kappa (\mathfrak p)$. Thus the lemma follows from Lemma 10.36.19.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)