\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

The Stacks project

Lemma 10.38.12. Suppose that $R$ is a ring, $0 \to M'' \to M' \to M \to 0$ a short exact sequence, and $N$ an $R$-module. If $M$ is flat then $N \otimes _ R M'' \to N \otimes _ R M'$ is injective, i.e., the sequence

\[ 0 \to N \otimes _ R M'' \to N \otimes _ R M' \to N \otimes _ R M \to 0 \]

is a short exact sequence.

Proof. Let $R^{(I)} \to N$ be a surjection from a free module onto $N$ with kernel $K$. The result follows from the snake lemma applied to the following diagram

\[ \begin{matrix} & & 0 & & 0 & & 0 & & \\ & & \uparrow & & \uparrow & & \uparrow & & \\ & & M''\otimes _ R N & \to & M' \otimes _ R N & \to & M \otimes _ R N & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow & & \\ 0 & \to & (M'')^{(I)} & \to & (M')^{(I)} & \to & M^{(I)} & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow & & \\ & & M''\otimes _ R K & \to & M' \otimes _ R K & \to & M \otimes _ R K & \to & 0 \\ & & & & & & \uparrow & & \\ & & & & & & 0 & & \end{matrix} \]

with exact rows and columns. The middle row is exact because tensoring with the free module $R^{(I)}$ is exact. $\square$


Comments (3)

Comment #470 by JuanPablo on

There is a typo, the bottom row should have instead of .

Comment #782 by Anfang Zhou on

Hi, I think it's better to say "snake lemma" here than "diagram chasing".

There are also:

  • 1 comment(s) on Section 10.38: Flat modules and flat ring maps

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00HL. Beware of the difference between the letter 'O' and the digit '0'.