Lemma 10.39.13. Suppose that $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of $R$-modules. If $M'$ and $M''$ are flat so is $M$. If $M$ and $M''$ are flat so is $M'$.

Proof. We will use the criterion that a module $N$ is flat if for every ideal $I \subset R$ the map $N \otimes _ R I \to N$ is injective, see Lemma 10.39.5. Consider an ideal $I \subset R$. Consider the diagram

$\begin{matrix} 0 & \to & M' & \to & M & \to & M'' & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow & & \\ & & M'\otimes _ R I & \to & M \otimes _ R I & \to & M''\otimes _ R I & \to & 0 \end{matrix}$

with exact rows. This immediately proves the first assertion. The second follows because if $M''$ is flat then the lower left horizontal arrow is injective by Lemma 10.39.12. $\square$

There are also:

• 1 comment(s) on Section 10.39: Flat modules and flat ring maps

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).