The Stacks project

Lemma 10.58.6. If $M$ is a finitely generated graded $S$-module, and if $S$ is finitely generated over $S_0$, then each $M_ n$ is a finite $S_0$-module.

Proof. Suppose the generators of $M$ are $m_ i$ and the generators of $S$ are $f_ i$. By taking homogeneous components we may assume that the $m_ i$ and the $f_ i$ are homogeneous and we may assume $f_ i \in S_{+}$. In this case it is clear that each $M_ n$ is generated over $S_0$ by the “monomials” $\prod f_ i^{e_ i} m_ j$ whose degree is $n$. $\square$

Comments (0)

There are also:

  • 5 comment(s) on Section 10.58: Noetherian graded rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00K0. Beware of the difference between the letter 'O' and the digit '0'.